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The storage effect, a mechanism that promotes species coexistence in temporally variable environments, poses a dilemma to

evolutionary ecologists. Ecological studies have demonstrated its importance in natural communities, but evolutionary models

have predicted that selection either impedes coexistence or diminishes the storage effect if there is coexistence. Here, we develop

a lottery model of competition in which two species experience a trade-off in competitive ability between two types of years.

We use an adaptive evolution framework to determine conditions favoring the evolution of the storage effect. Storage evolves

via divergence of relative performance in the two environments under a wide range of biologically realistic conditions. It evolves

between two initially identical species (or lineages) when the trade-off in performance is strong enough. It evolves for species

having different initial trade-offs for both weak and strong trade-offs. Our simple 2-species-2-environment scenario can be ex-

tended to multiple species and environmental conditions. Results indicate that the storage effect should evolve in a broad range of

situations that involve a trade-off in competitive ability among years, and are consistent with empirical observations. The findings

show that storage can evolve in a manner and under conditions similar to other types of resource partitioning.
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The storage effect (Chesson, 1994) is a mechanism for the coexis-

tence of competing species in temporally varying environments.

Chesson (1994) and Chesson et al. (2004) identify three com-

ponents of the storage effect: (1) temporal differences between

species in their per capita competitive abilities; (2) persistence

through unfavorable periods; and (3) positive temporal covaria-

tion of periods of high growth potential and low competition. The

first and third components are largely determined by how dif-

ferent environmental conditions affect the utilization rates of the

limiting resource by two (or more) competing species. When two

species have different relationships between utilization rate of a

resource and one or more varying environmental factors, a rare

species can achieve a high per capita growth rate under conditions

that allow it to have a much greater utilization rate and/or com-

petitive ability than its competitor(s). As Chesson (2003, p. 345)

pointed out, the storage effect “is a formalization of the concept

of temporal niche differentiation.”

Most theory on the storage effect has focused on its eco-

logical role in promoting coexistence (Chesson 2000), and has

shown that it can support coexistence of many species (Chesson

1994). Similarly, empirical studies provide many examples of co-

existence via the storage effect (Caceres 1997; Adler et al. 2006;

Angert et al. 2009). Nevertheless, it appears that only two theo-

retical studies have explored the evolution of the storage effect

(Kisdi and Meszéna 1995; Snyder and Adler 2011). Kisdi and

Meszéna (1995) examined the evolution of trade-offs between

survival and reproductive investment in the basic lottery model.

They concluded that evolution of such traits most often inhibited

local coexistence, frequently producing alternative single-species

outcomes. Recently, Snyder and Adler (2011) explored a more

narrowly defined model of competing annual plants; they argued

that evolution decreased variation in germination, eliminating a

storage effect if one already exists. Increased variance could only

evolve if germination was positively correlated with performance

during the later competitive stage, or if one species had little or

no ability to evolve a different germination variance. Snyder and

Adler (2011, p. E76) conclude that: “Outside of these conditions,

the storage effect is evolutionarily unstable: if two species were
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thrown together with traits that would permit a storage effect, they

would coevolve constant germination rates and the storage effect

would vanish.”

These two, largely negative views of the effect of evolution on

the storage effect contrast with analyses of the effect of traditional

character displacement, which generally allows or strengthens

coexistence (Abrams 1996). This is true for both nutritionally

substitutable resources (Lawlor and Maynard Smith 1976; Taper

and Case 1985, 1992; Abrams 1986) and nutritionally essential or

complementary resources (Abrams 1987b; Fox and Vasseur 2008;

Vasseur and Fox 2011). Such contrasting evolutionary effects are

not expected, given that the storage effect is a form of temporal

resource partitioning (Chesson 2003).

The storage effect involves several components, so there are

several ways in which it could be altered by evolution. Here,

we examine the evolution of traits determining species’ abilities

to use resources under different environmental conditions, when

those conditions vary temporally. We employ a version of Chesson

and Warner’s (1981) original lottery competition model, in which

the environmental variation affects reproduction. An adult stage

provides the between-year “storage” of competitive effects needed

for coexistence.

We show that storage evolves by increases in a consumer’s

ability to use resources under some environmental conditions at

the expense of its ability to use resources under other conditions.

The resulting change in the temporal pattern of competition in

each species is a simple analog of character divergence in re-

source utilization rates in deterministic models of resources that

are present simultaneously. Species that coexist due to mech-

anisms other than storage and those that already experience a

storage effect also undergo evolution in their temporal pattern of

performance that creates and/or increases the storage effect when

they become sympatric. In the 2-species model considered here,

the evolution of the storage effect increases the temporal variation

in both fitness and population densities in at least one, and often

both species.

Models and Analysis
Competition is represented by a simple lottery model similar

to those used by Chesson and Warner (1981). Recruitment

of young is the competitive stage of the life history, and is

also the stage when temporal variation in performance occurs.

Different species must have different responses of their offspring

production rates to a variable environmental factor to coexist.

Given this basic scenario, the storage effect increases if the

temporal correlation of different species’ per capita offspring

production decreases as the result of evolution. This article shows

that such a decrease is expected under adaptive evolution, given

trade-offs in competitive performance in different environments.

Our basic model represents the dynamics of a given competi-

tor type, where the “competitor type” can be either a species or a

reproductively isolated lineage within a species; we refer to both

as “species.” The adult population size Ni(t) of species i at time t

changes based on:

Ni (t + 1) = λai (t)Ni (t)∑
all species j

a j (t)N j (t) + ε
+ si Ni (t), (1)

where ai(t) is the per capita “competitive ability” of species i at

time t. Competitive ability could be the per capita rate of up-

take of a limiting resource or rate of production of reproductive

propagules. Using the latter interpretation, the parameter λ is the

maximum summed recruitment rate of all competing species. The

annual survival probability of adults is s. The recruitment function

is a Beverton–Holt curve, where ε represents the amount of com-

petition (�aN) at which total births are half the maximum value.

In many previous studies ε is set to zero, implying an abundance

of seeds/larvae sufficient to produce the maximum recruitment in

all years. Under the original lottery model, λ is the number of

settlement sites opened up by the death of adults; in this case, its

value is proportional to (1 − s).

The first term in equation (1) may also represent competi-

tive consumption of food that is required for reproduction, and

regenerates according to chemostat dynamics (Abrams 1984;

Rueffler et al. 2006). In this case, ai(t) represents an attack rate

(per capita consumption rate by one consumer i individual), λ

represents the product of the input rate of the resource and the

consumer’s conversion efficiency (with the latter equivalent for all

species), and ε represents the per capita washout or loss rate of the

resource.

Our analysis concentrates on a simple type of environmental

variation; a random sequence of equally probable years that have

either of two different sets of conditions (years of type 1 or type 2).

Equation (1) still describes the dynamics, but the competitive

ability of species i (ai) can be recast as a function of year type

(denoted z; z = 1 or 2) and of the trait, xi (with 0 ≤ xi ≤ 1), which

determines the relative ability of species i individuals to compete

in the two environments. Performance in the competitive stage is

independent of the environment type if ai(xi, 1) = ai(xi, 2). Given

equal maximum a values for each type of year, and a scenario

with “mirror image” effects of the trait on ai in each type of year,

x = 1/2 satisfies this condition. There is no temporal variation in

competition if x is fixed at 1/2. If x �= 1/2, competitive performance

differs from year to year; types may be better at recruitment in

years of type 2 and worse in years of type 1 (if x < 1/2), or better

in type 1 years if x > 1/2.

In most of the following analysis, we assume that the com-

petitive ability (ai(x, 1)) of an individual with trait x in a year of

type 1 is given by Ai1f (x), and the competitive ability in years
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of type 2 is Ai2f (1 − x), where Aij is the maximum competitive

ability of species i in type-j years, and f is an increasing function

with f (0) = 0 and f (1) = 1. Completely specialized individuals

(x = 0 or 1) have zero competitive ability in year types 1 and 2,

respectively. The trade-off is symmetrical when Ai1 = Ai2. Larger

values of x increase production of recruits in type 1 years and

decrease production in type 2 years. Recruit production reflects

an individual’s ability to take up resources and/or convert them

to offspring, as well as offspring survival to the adult stage. We

follow Rueffler et al. (2006) in describing the trade-off as strong

when f′′ > 0 and weak when f′′ < 0, where primes denote deriva-

tives. Weak trade-offs imply that a generalist (x = 1/2) has a

competitive ability greater than the average of the two specialists

(see Fig. 1 below). We will not consider cases where curvature,

f′′, changes sign with x.

The evolution of x is described by the gradient dynamics that

arises from quantitative genetic models of frequency dependent

traits with a low genetic variance (Iwasa et al. 1991; Abrams

et al. 1993). Because of the frequency dependence, the fitness

gradient in this equation is formulated in terms of the fitness of a

rare “mutant” type within species i having a trait xiM that differs

slightly from the “resident” trait, xiR. The assumption here is that,

as in traditional models of quantitative genetics, recombination

maintains a relatively narrow and unimodal distribution of trait

values (see, e.g., Schreiber et al. 2011). The change in the trait

over 1 year is:

�xi = vi xi R(1−xi R) (∂Wi (xi M , xi R)/∂xi M |xi M =xi R )/Wi (xi R, xi R),
(2)

where Wi = s + λAi1f (xiM)/(ε + Ai1f (xiR)Ni) in a type 1 year and

Wi = s + λAi2f (1 − xiM)/(ε + Ai1f (1 − xiR)Ni) in a type 2 year;

vi is a rate constant for evolutionary change, and is proportional

to the additive genetic variance. The product, xiR(1 − xiR) on the

right-hand side of the equation reflects the loss of genetic vari-

ation implied as the mean resident trait approaches a maximum

or minimum value (Abrams 1999). The rate constant vi may be

interpreted as four times the maximum additive genetic variance

(which occurs when xiR = 1/2). Similar results (P. A. Abrams, un-

publ. data) were obtained using an alternative model (Abrams and

Matsuda 2004) in which genetic variance is approximately con-

stant for most trait values, but biased mutation prevents x from too

closely approaching its limiting values of 1 and 0. Appendix S1

analyzes the attractivity of the intermediate and boundary states

for a symmetric 1-species model; these results are applied

below.

THE OUTCOME OF EVOLUTION IN A SINGLE SPECIES

We begin by analyzing single species evolution, as this is a pre-

requisite for understanding the evolution of two competitors. The
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Figure 1. The functional forms of the trade-off in competitive

ability considered in the examples provided. (A) The pure power-

law trade-off. Values of the trade-off exponent (m) greater than

1 produce a strong trade-off in which a specialist strategy has

a greater (arithmetic) mean competitive ability than a generalist

strategy. (B) The binomial trade-off function, shown with a varying

linear component (q) for a weak trade-off (m = 0.33, dashed lines)

and a strong trade-off (m = 3, solid line). Competitive ability is

given for a year type 1; competitive ability for year type 2 is the

same as shown here with the x-axis reversed (i.e., running from

1 to 0).

single species, and our initial assumption that the trade-off is

symmetrical, allow us to drop all subscripts. Consider the gen-

eralist equilibrium at x = 1/2. Rearranging equation (A-2) in

Appendix S1, the condition for local stability of the generalist
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state with slow evolution is:

εs(1 − s)

Aλ
<

(
1 − f f ′′

f ′2

)
f, (3)

where primes denote derivatives of f , which are evaluated at the

equilibrium (x = 1/2). This inequality sets bounds on the shapes

of the trade-off that allows the generalist equilibrium to evolve

with a symmetric trade-off. The generalist state is always local at-

tractive when ε = 0 and f′2 > ff′′. The latter inequality involving f

and its derivatives is satisfied for all parameters given either a

power-law trade-off or the binomial trade-off introduced below;

in addition, it must be satisfied for any weak trade-off. The condi-

tion ε = 0 corresponds to the assumption that all empty sites are

filled (or resources used) every year. This in turn allows the per

capita reproductive output to become arbitrarily large when N is

sufficiently low. In a 2-species competitive system, ε = 0 results in

an extremely strong rare-type advantage when the two types have

different environmental sensitivities. In most natural systems, a

nonzero value of ε is likely; some resources are lost from the sys-

tem due to processes other than consumption or some empty sites

are not located. Thus, we use a small positive value for the recruit-

ment half-saturation value ε in the numerical examples below. If

ε > 0, the shape of f determines stability of the generalist equilib-

rium; sufficiently strong trade-offs make x = 1/2 an evolutionary

repeller.

The generalist equilibrium may coexist with one or two lo-

cally attractive specialist equilibria; conditions for their local sta-

bility are also presented in Appendix S1. In general, both the

trait and the population size fluctuate in any system for which

ε > 0. However, fluctuations in both variables become very small

when x is close to 1/2 and the evolutionary response is slow (v is

very small). The population size remains constant when ε = 0

because the recruitment rate is then always the maximum possible;

even then, x exhibits small fluctuations around 1/2 as different year

types select for higher or lower values of x. Greater values of A or

λ, smaller values of ε, and s close to one or zero all reduce the left

hand side of condition (3), and this expands the range of trade-off

shapes allowing persistence of the generalist state. In traditional

lottery models, the maximum birth rate is often assumed to be

the number of sites opened by the death of adults. Under this

interpretation, λ is proportional to (1 − s); the left-hand side of

inequality (3) is then a linearly increasing function of survival

probability s. The generalist state is then least likely to be stable

when survival is high.

Determining the dynamics of the system requires a specific

form for the scaled trade-off function, f . The most common form

is a simple power law: f (x) = xm. Here, m > 1 is a strong and

m < 1 is a weak trade-off. Under a symmetric power-law trade-off,

x = 1/2 represents a fitness maximum provided that m < 1/s; it is a

locally attracting state for all exponents that satisfy this condition

(see Appendix S1). However, x = 1/2 can also represent a locally

attracting evolutionary state for a range of strong trade-offs (larger

exponents), as shown below. Larger values of m make it less likely

that a generalist will evolve, as they imply a greater disadvantage

for generalists relative to specialists. The power function trade-off

may often be unrealistic, as it implies that very large decreases

in the competitive performance of a near-specialized type are re-

quired to achieve extremely small increases in its performance on

the other year type. Thus, we also investigate a binomial function

consisting of a linear and a nonlinear term: f (x) = qx + (1 – q)xm,

where q is a positive constant (0 < q < 1). This function preserves

the sign of second derivative of f . However, positive q means that

f has a positive slope at x = 0. Figure 1 illustrates some trade-offs

with power function and binomial forms.

If the phenotypic distribution within the population remains

unimodal with a small variance, the dynamics are described by

the following two equations, which assume the binomial f , and

are based on equations (1) and (2) above, with the environment

denoted by z:

Nt+1 =

⎧⎪⎨
⎪⎩

Nt

(
λA11

(
qxt + (1 − q)xm

t

)
ε + A11 Nt (qxt + (1 − q)xm

t )
+ s

)
if z = 1

Nt

(
λA12(q(1 − xt ) + (1 − q)(1 − xt )m )

ε + A12 Nt (q(1 − xt ) + (1 − q)(1 − xt )m )
+ s

)
if z = 2

⎫⎪⎬
⎪⎭

(4a)

xt+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xt + vxt (1 − xt )

(
λA11

(
mxm

t + q
(
xt − mxm

t

)
xt (εs + xt q A11(λ + Nt s) + A11(λ + Nt s)xm

t (1 − q))

)
if z = 1; otherwise

xt + vxt (1 − xt )

( −λA12 (m(1 − xt )m + q(1 − xt − m(1 − xt )m))

(1 − xt ) (εs + (1 − xt ) q A12(λ + Nt s) + A12(λ + Nt s)(1 − xt )m(1 − q))

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4b)

If there is a second species, both x and N need species-

specific subscripts. (The trade-off parameters q and m may also

differ between species, but this possibility will be ignored for sim-

plicity.) The denominators of the right-hand sides of the above

equations must then be modified by terms reflecting the con-

sumption by species 2. (These are N2tA21(q2x2 + (1 − q2)x2
m) in

environment 1, and N2tA22(q2(1 − x2) + (1 − q2)(1 − x2)m) in

environment 2.) The 2-species model can be used to investigate

the outcome of evolution if the two types have identical param-

eter values and slightly differing initial trait values. This corre-

sponds to branching (Geritz et al. 1998) in models with asexual
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reproduction and mutation-limited evolution. Additional species

may be added to examine the possibility of secondary branching.

(Abrams (2006a,b) provides examples of this approach for a dif-

ferent model.) Two-species systems are explored in the following

section.

Most of the analysis of equation (4) is presented in Ap-

pendix S1; it is largely based on deterministic approximations

that assume low temporal variation of the variables or strict alter-

nation of year types. Attractors in the latter deterministic systems,

which are stable points or period-2 cycles, usually correspond, in

the stochastic system, to distributions that remain in the vicinity

of these deterministic attractors for relatively long periods. We

will also refer to such states in the stochastic system as attractors,

although evolution away from a deterministic attractor may occur

with a long run of one type of year in the stochastic system. We

consider three potential attractors for this symmetrical system:

the generalist (x varies around 1/2) and two specialists (x = 0

or 1). Numerical analysis is used to explore the exact dynamics of

stochastic systems for particular parameter values. We begin by

considering a representative system with a symmetrical trade-off,

high survival, and a low half-saturation constant (λ = 3; s = 0.85;

ε = 1; A11 = A12 = 1). This baseline example has a power-law

trade-off (q = 0) and moderate rate of evolutionary change (v =
0.02). The analysis concentrates on the role of the exponent m in

determining evolutionary outcomes.

Appendix S1 shows that the specialist states of this base-

line system are locally unstable and the generalist is stable if

m < 1. The deterministic approximation implies that the gener-

alist attractor loses local stability when inequality (3) is violated

(m > 2.9586). The specialist states are locally stable for values of

m that are sufficiently close to 1. However, m values close enough

to 1 produce specialist attractors having very small domains of

attraction in this model; the initial x must be extremely close to

the boundary value of 0 or 1 for evolution back to the boundary

value (see eq. A-10). These two conditions suggest that, for m <

1.1, the generalist is the only attractor; for 1.1 < m < 2.96, all

three states of the system will be local attractors, while for m >

2.96, only the two specialists are local attractors. When there are

three possible attractors the domains of attraction of the specialist

states increase and that of the generalist decreases as m becomes

larger.

The difference between deterministic and stochastic systems

may be examined by numerical iteration of the stochastic system.

An important effect of stochasticity is its potential for shifting the

state of the system between the domains of attraction of differ-

ent states. Figure 2 shows the numerically determined population

and trait dynamics for a single species when m = 2.8, given ini-

tial conditions at the intermediate equilibrium point (x = 0.5 and

N = 13.0356) and v = 0.02. This exponent is slightly below

the maximum for local stability of the deterministic system. In

A Population density, N 

Time

B Trait, x 

Time

Figure 2. Evolution of a single species in an example with a strict

power-law trade-off (q = 0), having m = 2.8, which is near the

upper end of the predicted range of local stability of the generalist

equilibrium. Other parameters are: ε = 1; s = 0.85; λ = 3; v = 0.02;

A11 = 1; A12 = 1.

the stochastic simulation shown, x fluctuates around 0.5 until a

succession of type 2 years brings the system into the domain of

attraction of x = 1 at approximately year 4000. The variability in

population size increases after specialization because of the low

performance (zero reproduction) in type 2 years. This variation

also contributes to a reduction in the mean population size, from

approximately 13.0 in years before the transition, to 8.8 after-

wards. This decrease occurs in spite of an increase of f (x1), from

0.1436 to 1.0, following specialization. The decrease in mean pop-

ulation size with greater variability is a consequence of Jensen’s

Inequality (Ruel and Ayers 1999), given that per capita growth

rate is a saturating function of population size. Generalists did

not transition to specialist states in simulations of 200,000 time

units for any simulation of the model with the baseline parameters

when m < 2.6. While 2.6 is more than 10% below the determin-

istic maximum m, the range of exponents for which x = 1/2 is

attractive depends on v. Simulations of much longer duration with

EVOLUTION FEBRUARY 2013 3 1 9
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v = 0.001, remained at the generalist attractor for exponents up

to m = 2.9. Overall, equation (A-10) performed quite well in pre-

dicting the domain of attraction of the specialist state for values of

m close to 1. Critical exponents based on equation (A-10) differed

by less that 5% from those based on stochastic simulations, and

this was not sensitive to v. If present, temporal autocorrelation

of environmental states would increase transitions between states

and reduce the maximum m.

The preceding example assumed a power-law trade-off. The

presence of a linear term (q > 0) increases the range of exponents

that yield a generalist, and reduces the prevalence of alternative

specialist or generalist outcomes. The binomial expression for f (x)

also leads to some novel dynamics in the single-species system.

The two specialist and the generalist states may all be unstable;

parameters where this occurs are shown for the baseline system in

Figure 3A, which identifies four classes of dynamics as a function

of m and q. Domain 3 of the figure exhibits a pair of attractors

with semispecialized phenotypes. Such outcomes were relatively

common when the half-saturation value ε was small relative to the

product of competitive ability and population size, linear trade-off

terms were large (q >> 0), and the exponent m was significantly

greater than 1. In the stochastic system with a moderate or large v,

shifts between the two semispecialized attractors were common.

Figure 3B provides an example of such shifts for a model with the

baseline values of s, A1j, and ε, combined with m = 3.5, q = 0.3,

and v = 0.05. Larger values of v produce more frequent shifts

between attractors and/or shifts over a wider range of exponents.

Sufficiently high m (m > 4.8 in this case) leads to alternative

specialist outcomes with x very close to 1 or to 0 and no transi-

tions, whereas exponents less than approximately 3.2 only have a

generalist attractor (see Fig. 3A).

If a single species has unequal exploitation abilities

(A11 �= A12), it will often still evolve to an intermediate phe-

notype; the mean x is > 1/2 if A11 > A12, and < 1/2 under the

reverse inequality. The mean x for the generalist attractor is close

to 0.5 when Amaxλ/ε is large (>> 1). However, specialization or

near-specialization, even with some weak trade-offs, occurs when

Amaxλ/ε is relatively small. The range of trade-off exponents that

allow the generalist (i.e., intermediate x) attractor to be locally

stable is smaller than in the symmetric case. If the baseline exam-

ple is changed so A11 = 1.5 and A12 = 0.5, the generalist attractor

in the stochastic system has a mean x of approximately 0.535

when m = 1.2, and a mean x of approximately 0.64 when m =
2.0. Alternative specialist and generalist attractors exist for ap-

proximately 1.11 < m < 2.05, although the resource 2 specialist

has a smaller domain of attraction. Exponents of 2.05 and greater

produce specialization on resource 1 if they are started from a

generalist state.

Overall, the stochastic simulations confirm the general con-

clusions from the analytic results in Appendix S1. A generalist is

Limiting exponent, m, for stability 

Linear trade-off coefficient, q 

B

A

Trait, x 

Time

2

1 4

3

Figure 3. (A) The analytically determined bounds on stability of

generalist and specialist equilibria for a symmetrical system hav-

ing baseline parameters A = 1, λ = 3; s = 0.85, and ε = 1. The

generalist state at x = 1/2 is locally attracting for q and m values

below the dashed line, while the specialist states (0, 1) are locally

attracting for parameter combinations above the solid line. Thus,

zones 1 through 4 are defined as follows: 1—generalist and spe-

cialist locally attracting; 2—generalist repelling and specialists at-

tracting; 3—generalist and specialist states repelling; 4—generalist

attracting and specialists repelling. In zone 4 there are two semis-

pecialized attracting states, one > 1/2 and the other < 1/2. The

upper values of the axes are as shown because the generalist is

always locally attracting for q > 0.46781, and exponents m > 10

seem biologically unlikely. Coefficients q that are close to or lower

than the sharp corner in the solid line at q = 0.078626 produce

very small domains of attraction, so the effective m for specialist

stability in a finite population is somewhat higher than the solid

line. (B) Temporal evolution of a trait that jumps between two

semispecialized traits in a system with a strong trade-off having

a significant linear component. The parameters are as in panel A

with m = 3.5, q = 0.3, and v = 0.05.

the only outcome for large q, and it is also the only outcome at

sufficiently low m when q is low to moderate. Either specialist,

but not the generalist evolves at sufficiently high m, provided that

q does not exceed a threshold value. A set of alternative states

3 2 0 EVOLUTION FEBRUARY 2013



EVOLUTION OF STORAGE EFFECT

(either two semi-specialist states, or the generalist and both spe-

cialist states) exist for a range of intermediate m values, again

provided q is not too large.

COMPETITION AND EVOLUTION IN SYSTEMS WITH

TWO (OR MORE) SPECIES

Initially identical species
Storage evolves when evolution increases a species’ expected

per capita growth rate when it is rare. Sympatric divergence in the

relative performance in different year types has this effect, because

it reduces the other species’ expected competitive effect in years

that are good for the focal species, particularly when the focal

species is rare. The first examples in this section illustrate different

scenarios under which a storage effect may evolve or increase

in magnitude when two species have identical parameters and

initially small differences in trait values. We later address the same

question for species that initially differ in one or more parameters.

In both cases, we measure the magnitude of the storage effect as

the geometric mean growth rate of a rare species over a long series

of years when the resident species is at its stochastic attractor.

Appendix S1 gives the conditions necessary for branching to

occur at a generalist equilibrium in a symmetrical system, based

on an analytical approximation assuming slow evolution (small v).

We use “branching” to mean that adding a second species with

identical parameter values and an initial trait value slightly differ-

ent from that of the first species causes the trait values of the two

species to diverge (eq. A-4), usually to more specialized states.

This corresponds to situations in which a generalist state is an

attractor in a 1-species model but selection is disruptive at the

generalist attractor (Geritz et al. 1998). Under the dynamics given

by equation (2), this leads to divergence in a 2-species model

when both species have the same parameters, and both initially

have very similar x values on that attractor. For example, with a

pure power function trade-off and Aij equal or all i, j, the branch-

ing criterion is m > 1/s. Both species converge to the generalist

state when m < 1/s, but their coexistence is neutral, and extinc-

tion of one or the other in a stochastic system is inevitable. The

binomial trade-off function is discussed below. For any trade-off

function, population fluctuations increase in each species as its

level of specialization increases during divergence.

The end point of divergence from x = 1/2 when f (0) = 0 is

two specialists. This is an extreme form of storage in that the inva-

sion fitness goes from an initial value of W = 1 (because the two

species are initially identical) to the maximum allopatric fitness

(because opposite specialists do not compete). This represents

complete divergence in the temporal niches of the two species.

Complete divergence in a symmetrical system occurs when the

second derivative of f is large enough in magnitude (expression

A-4). This expression can be used to determine the minimum

m required for branching in systems with the binomial trade-off

function. The coefficient (q) of the linear terms in a binomial

trade-off function affects the branching criterion in a complicated

manner. As noted above, the minimum m required for branching

is 1/s for a power function trade-off. There is a modest increase in

the minimum m for branching with increasing q until q approaches

1; q close to 1 implies a near linear trade-off, and eliminates the

possibility of branching. In the example considered above (λ = 3;

s = 0.85; ε = 1; Aij = 1, v = 0.02), divergence to specialized types

is first observed for m between 1.2 and 1.25 when q = 0.3, and

between m = 1.3 and 1.35 when q = 0.5. This compares to m ∼=
1.18 when q = 0. Branching does not occur for any m when q >

0.89 for these parameters. If the two species have relatively high q

and m values, each one in allopatry may have two semispecialized

alternative attractors, as shown in Figure 3. The theory based on

the universally present equilibrium points at x = 1, 1/2, or 0 does

not apply to these semispecialized attractors, but simulations for

a wide range of parameters within zone 3 in Figure 3A have all

exhibited divergence to opposite complete specialization.

With asymmetric exploitation (Ai1 �= Ai2), it is more difficult

to satisfy the branching criterion because of the lower range of

exponents over which the generalist phenotype is an attractor. For

example, with q = 0, Ai1 = 1.5, and Ai2 = 0.5 (and other param-

eters at baseline values) divergence of two species from gener-

alist starting conditions in both species occurs for approximately

1.22 < m < 2.05. However, even species with much stronger

asymmetries exhibit divergence for a significant range of interme-

diate trade-off exponents when half saturation of the recruitment

function, ε, is sufficiently low.

Initially different species
Here we consider two cases; in the first, only one species is capa-

ble of significant adaptive evolution in its environmental perfor-

mance. In the second, both species evolve and both have trade-offs

characterized by different maximum competitive abilities (Aij). In

both cases, each species is initially located on its allopatric gen-

eralist attractor.

The combination of one evolving and one nonevolving

species led to evolution of the storage effect in Snyder and Adler’s

(2011) model. It is also of interest because it illustrates the pure

effects of evolution in a single species, without the complications

of coevolution. Introducing a fixed (x = 1/2) generalist with Aij

and m values identical to those of the evolving species causes the

latter to become a specialist if it satisfies the branching criterion.

However, if the generalist state is globally stable in a single-

species system, the evolutionarily flexible generalist species does

not evolve away from x = 1/2, but is at a disadvantage relative

to the fixed generalist species that shares the same trade-off. The

flexible species is then slowly excluded. Because of the random

sequence of year types, the evolutionary response to a year of

type i is equally likely to be advantageous or disadvantageous in
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Mean Size of Fixed (solid) and Evolving (dashed) Populations

Trade-off exponent, m

Figure 4. Mean population sizes of sympatric generalist (solid—

species 1) and specialist (dashed—species 2), as a function of the

trade-off exponent, m. This is applicable to either a system with

two inflexible species or an evolving species (that becomes spe-

cialized on resource 2, so x2 = 0) versus a fixed generalist. Higher

exponents make the generalist progressively less efficient due to

a lower attack rate. The other parameter values are: ε = 1; s =
0.85; λ = 3; q = 0.3, v = 0.05; A11 = 1; A12 = 1; A22 = 1; A21 = 1.

the following year; the shape of the recruitment function implies

that the variation reduces mean fitness, so the flexible species is

excluded. One would expect selection against evolutionary flexi-

bility (decreased v) in this scenario (Kawecki 2000).

If m > 1/s, the evolving and fixed generalist species are

usually able to coexist because the evolving species diverges. The

qualification (usually) arises because, when m is only slightly

greater than the branching threshold, divergence may be slow

enough that the density of the evolving species drops to levels

that would ensure exclusion in most finite populations before

divergence allows it to increase. When coexistence occurs, the

final competitive impact of the fixed generalist on the evolving

species is larger when m is smaller. If m is relatively large, the

generalist has lower competitive abilities (f (1/2) << 1/2), and

therefore fares worse in competition with the evolved specialist.

Figure 4 shows how the densities of the two coevolved species

depend on the trade-off exponent, m. Larger values of m favor the

specialist, while smaller values result in a much higher density

for the fixed generalist.

A more likely scenario assumes that species initially differ

in Aij, or some other parameters, and both evolve in response to

sympatry. When each has a generalist attractor in allopatry, both

usually diverge following the sympatry. If our baseline example

is changed so that A11 = 1.5 and A12 = 0.5, A21 = 0.5 and A22 =
1.5, the evolutionary equilibrium mean values of x1, x2, N1, and

N2 change following invasion of species 1 by species 2 as shown

in Figure 5. In a system with a single species, the mean value of x

is > 1/2 when Ai1 > Ai2, and < 1/2 when this inequality is re-

versed. However, the allopatric mean x is relatively close to 1/2

when ε is small relative to the total utilization rate (�ANf(x)).

The example in Figure 5 has a threefold difference in a species’

A values, and a total utilization close to 20 times ε; this yields an

allopatric mean trait of x1 = 0.524 for species 1 and x2 = 0.476

for species 2. The displacement in sympatry causes divergence to

x1 = 0.916 and x2 = 0.084, implying considerable temporal re-

source partitioning (i.e., a storage effect). The magnitude may be

measured by the change in the invasion fitness of species 2 caused

by this displacement. For Figure 5, that advantage is a geometric

mean invader growth rate of 1.3934 after divergence, compared

to 1.0820 for one species’ allopatric phenotype invading the al-

lopatric form of the other species. Figure 5 shows that the initial

divergence of the rare invader (species 2) is quite rapid. As diver-

gence proceeds, divergence slows and the periods of dominance

of one species shorten.

The magnitude of the displacement in sympatry becomes

larger when the initial difference in maximum attack rates,

|Ai1 – Ai2|, is larger, given the mirror-image symmetry in attack

rates assumed here. Larger trade-off exponents within the range

of weak (m < 1) trade-offs also imply a greater shift in sympatry;

increasing m from 0.5 to 1 in the example from Figure 5 yields

complete specialists in sympatry, even though the allopatric mean

trait values differ only slightly (x = 0.532 and 0.468 for species

1 and 2, respectively) from those in the otherwise-comparable

system with m = 0.5. When the A values for different environ-

ments differ, larger half-saturation constants (ε) favor evolution of

a greater degree of specialization, both in allopatry and sympatry.

However, changing ε often causes a relatively small change in the

magnitude of divergence, because both allopatric and sympatric

trait values are changed in the same direction.

Mirror-image symmetry in competitive abilities in the two

environments is not required for character divergence in this

scenario with different, weak trade-offs. However, divergence is

usually asymmetrical. Assume species 1 and 2 have the same

mean Aij, but have different ratios of A1j/A2j. If, for both species,

A1j > A2j, and there is coexistence following sympatry, the species

with a higher ratio becomes more specialized on environment 1,

exhibits a larger shift in its trait, decreases in abundance, and

becomes more variable following divergence.

Evolution of two species when other mechanisms allow
coexistence
In the above examples, temporal partitioning of resources via

between-year differences in competitive performance was re-

quired for coexistence. Previous work on resource partitioning

based on resource identity has revealed that parallel displace-

ment, usually involving a net convergence or divergence of traits,

frequently occurs when some resources or factors unrelated to the
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A Population densities (species 1 black; species 2 red)

Time

B Trait values  (species 1 black; species 2 red)

Time

Figure 5. Character displacement of two species with different sets of maximum utilization rates. Parameter values common to both

species are: m = 0.5; ε = 1; s = 0.85; λ = 3; q = 0.3, v = 0.02. Species 1 has A11 = 1.5 and A12 = 0.5, while species 2 has A21 = 0.5 and

A22 = 1.5. Species 2 is a rare invader. Both species initially have x values equal to their long-term means in allopatry (0.524 for species 1

and 0.476 for species 2). The initial population of species 1 is also at its allopatric mean (17.95). The population is only shown for the first

and last 500 years of 4000.

evolving trait allow coexistence in the absence of partitioning of

the trait-related resources (Abrams 1986, 1987a). In our 2-species

models, additional limiting factors could allow coexistence with-

out the storage effect. We have investigated two models with such

factors; in one, there is purely intraspecific density dependence in

survival; si = s0i/(1 + βiNi), where s0i is the maximum survival

probability and βi measures the strength of the density depen-

dence. In the second model, resource partitioning within a year

is implemented by weighting Ni by a competition coefficient, α

in the dynamical equations for species j, and vice versa. If β > 0

in model 1 or α < 1 in model 2, coexistence is possible without

any difference between environmental performance traits. How-

ever, divergence of x values still occurs in sympatry for the vast

majority of systems, and this leads to or increases the storage

effect. Parallel change occurs for otherwise very similar species

with density-dependent survival. Detailed results for these mod-

els will be presented elsewhere (P. A. Abrams et al., unpubl.

ms.).

Evolution with more species and more environmental
states
The main model considered above has only two competing species

and two environmental states. However, the general circumstances

when evolution of a storage effect is expected do not depend on
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these assumptions. It is easy to confirm that having a third re-

source whose utilization is independent of the trait does not qual-

itatively alter the expectation of divergence in use of the original

two resources. We have examined analogous models having a

continuous range of states characterized by a continuous envi-

ronmental variable. The consumer species are characterized by

unimodal “environment utilization curves,” describing their com-

petitive ability, A, as a function of the environmental variable. We

assumed utilization curves have a fixed form and evolve by shifts

in their position, with negative effects on other fitness components

when that position is suboptimal. Evolutionarily stable utilization

curve positions were determined using methods similar to those

employed above. The traits of two species (utilization curve po-

sitions) diverge in such cases, producing or enhancing a storage

effect (P. A. Abrams et al., unpubl. data).

Discussion
Our introduction highlighted the puzzling fact that two previous

studies have concluded that evolution did not produce or enhance

coexistence via the storage effect. Nevertheless, the existence of

this mechanism has been supported by empirical work. Our anal-

ysis of simple models shows that coexistence, or more robust

coexistence, via the storage effect is expected to evolve under

lottery competition for a wide range of conditions. Further, such

evolution occurs under circumstances that are analogous to those

that allow coexistence to evolve via nontemporal resource par-

titioning. Indeed, we found that increased temporal partitioning

can result from evolutionary branching within a single, relatively

homogeneous species (lineage), or from character divergence of

species that initially differ in their trade-off relationships. These

results suggest that, given environmental variability affecting re-

cruitment and a related trade-off in traits, the storage effect often

evolves, producing and/or maintaining diversity.

This conclusion differs from that recently reached by Snyder

and Adler (2011), and from earlier work by Kisdi and Meszéna

(1995). Although there are minor differences between the popula-

tion dynamics given by equation (1) and those described by these

previous models, the primary difference lies in the type of trait

that is assumed to evolve. Because the “storage effect” mechanism

consists of several components, it is possible for traits affecting

different components to be affected differently. The work by Kisdi

and Meszéna (1995) failed to find a positive effect of coevolution

on coexistence in a local context; evolution of a trait determin-

ing position on a trade-off between survival and reproductive rate

produced priority effects in their model. Such trade-offs are likely

to occur in some systems, and it would be interesting to explore

the interaction of this type of trait with those that determine the

relative competitive abilities in different environments. Similar

fecundity-survival trade-offs in a simple nonlottery system were

shown to have potentially positive or negative effects on coexis-

tence (Abrams 1987a).

Snyder and Adler (2011) based their model on annual plants

with a seed bank and assumed that variation in the germination

fraction is the evolving parameter. Because variability per se is

disadvantageous, and because the seed stage was not the competi-

tive stage, they found that variability would generally decrease, so

that the storage mechanism would usually tend to disappear. How-

ever, they also found that storage could evolve if the germination

rate was positively correlated with performance in the subsequent

competitive seedling stage. While this “predictive germination”

was treated as a special case, it seems likely as a product of adap-

tively evolving germination cues (Pake and Venable 1996; Angert

et al. 2009). Performance during the competitive stage of most

systems will depend on some traits that involve a trade-off in per-

formance between different year types. Evolution in this scenario

causes resource partitioning to increase. Evolution of the storage

effect is then simply evolution of temporal resource partitioning,

and it can produce evolutionary branching and/or character diver-

gence under circumstances similar to those for analogous models

of nontemporal partitioning.

This similarity is reflected in previous evolutionary models

of competition based on resource partitioning in deterministic

environments. Rueffler et al. (2006) analyzed the evolution of

resource partitioning between two consumer species using such

a model with abiotic resource dynamics, where the within-year

expressions for birth and survival were very similar to those used

here. They assumed a power-law function for the trade-off in re-

source utilization rates, and found that branching occurred when

the trade-off was strong and the generalist equilibrium was stable.

The difference in the form of the models of Rueffler et al. (2006)

and those considered here arises from temporal segregation in

our models, which leads to a multiplicative rather than an additive

combination of fitness contributions from different resources. The

multiplicative form means that stronger trade-offs are required

for divergence of initially similar species. This analogy to tradi-

tional character displacement suggests that sympatric-allopatric

trait comparisons are likely to be a productive approach to identi-

fying potential examples of the evolution of storage. Another sim-

ilarity of our storage models and traditional resource-partitioning

models of character displacement is that adaptive specialization

of one species often decreases its population size (Abrams 2012).

The model considered here also has many similarities to pre-

vious continuous time models of the evolution of specialist and

generalist types in environments where there are two spatially or

physically distinct resources (Egas et al. 2004; Abrams 2006a,b;

Ravigne et al. 2009). Although there are no physical differences

between the resources present in different years in our models,

years are dynamically independent; consumption (recruitment) in

one year does not affect resource abundance or opportunity for
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recruitment in the next. This makes them effectively distinct re-

sources for the purpose of coexistence (Haigh and Maynard Smith

1972; Abrams 1988). However, the complete temporal segrega-

tion of the two “resources” in our model changes the form of

the fitness function, changing the conditions for the evolution of

specialists and generalists from those in models with nontemporal

partitioning.

Literature on the storage effect has concentrated on systems

with stochastic variation. However, the ecological and evolution-

ary consequences of competition can be very similar when there is

regular alternation of resources or environments, and consumers

experience a trade-off in their abilities to use the different envi-

ronments. In fact, some of our approximate analytical results are

based on a fitness expression that is an exact model for such sea-

sonal alternation. Storage effect models also usually represent sys-

tems in which different life stages have different limiting factors.

However, resource partitioning via different temporal patterns of

resource consumption also allows coexistence in systems lacking

population structure (Abrams 1984). In such systems evolution

favors increased partitioning under circumstances qualitatively

similar to those described here.

We did not explicitly consider the ability of evolution to

allow coexistence of two species whose initial traits would lead to

deterministic exclusion of one by the other. This outcome is pos-

sible given a large enough population of the inferior species and

sufficiently rapid evolution. It is especially likely in a metacom-

munity context with spatial variation in competitive dominance,

where some patches allow the on-average inferior competitor to

coexist in the absence of evolution. However, these considerations

are identical for traditional character displacement due to non-

temporal resource partitioning; here too, evolution of the ability to

coexist from a state of deterministic exclusion in a homogeneous

system depends on the inferior competitor’s initial population size

being large enough and its rate of evolution being sufficiently

rapid.

Our analysis is limited in that we do not examine the long-

term stochastic distribution of trait values, and our main model

assumes a very simple form of environmental variation (two

states; no autocorrelation). Equation (2) assumes a simple and

extreme form for the change in genetic variance with mean trait

value that makes the specialist phenotypes into absorbing states

because genetic variance disappears completely at those states.

We have briefly mentioned unpublished work on models with

more states and others with mechanisms that prevent variation

from disappearing in specialists; preliminary analyses of these

(P. A. Abrams, unpubl. data) have yielded results broadly simi-

lar to those described here over ecologically relevant time scales.

Learning more details of the impact of ecological factors on the

temporal distribution of trait values is an important area for future

work, as are studies using more realistic genetic models.

We end by considering empirical evidence regarding both

the assumptions and the predictions of the model. Our model

requires a trade-off in performance for different types of years.

Such a trade-off should arise for the same reason that perfor-

mance on physically different resources or in different habitat

patches evolves: different traits are often required for optimal

performance in qualitatively different conditions. Many species

that experience temporal environmental variation show evidence

of such trade-offs. For example, the relative success of ground-

fish spawning has been shown to depend on environmental condi-

tions, with different species favored in different years (Brodziak

and O’Brien 2005). For fish species with sedentary adults and

dispersing larvae, variation in spawner-recruitment relationships

is generally assumed to be a consequence of unknown or unmea-

sured environmental factors. Plant species similarly show great

temporal variation in recruitment, probably because of abiotic

variation (Warner and Chesson 1985; Facelli et al. 2005). The

evolution of different sets of environmental sensitivities is likely

to be common.

Although few studies have examined storage effects in terms

of the underlying traits, research on winter annual plants from the

Sonoran desert has shown two trait axes to be important for the

storage effect. These species show a trade-off between water-use

efficiency and relative growth rate, which translates to a reproduc-

tive advantage in dry and wet years, respectively (Huxman et al.

2008; Kimball et al. 2012). This provides a rare-species advan-

tage, promoting coexistence through the storage effect (Angert

et al. 2009). The second axis in these desert annuals involves an

increase in the seedbank with an increase in interannual variation

in fecundity (Pake and Venable 1996; Venable 2007). Although

this second scenario is not explored in our model, it suggests that

variation in the environment may promote the conditions required

for evolutionary branching (eq. A-4), further promoting evolution

of the storage effect.

The scarcity of empirical evidence for character divergence

of environmental sensitivities is probably due largely to the lack of

previous theory suggesting that it is likely to occur. We hope that

our work will stimulate such studies. If such displacement occurs,

it could be a significant factor influencing geographic variation in

species diversity.
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