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Summary

1. Statistical tests partitioning community variation into environmental and spatial components

have been widely used to test ecological theories and explore the determinants of community struc-

ture for applied conservation questions. Despite the wide use of these tests, there is considerable

debate about their relative effectiveness.

2. We used simulated communities to evaluate the most commonly employed tests that partition

community variation: regression on distance matrices and canonical ordination using a third-order

polynomial, principal components of neighbour matrices (PCNM) or Moran’s eigenvector maps

(MEM) to model spatial components. Each test was evaluated under a variety of realistic sampling

scenarios.

3. All tests failed to correctly model spatial and environmental components of variation, and

in some cases produced biased estimates of the relative importance of components. Regression on

distance matrices under-fit the spatial component, and ordination models consistently under-fit the

environmental component. The PCNMandMEMapproaches often produced inflatedR2 statistics,

apparently as a result of statistical artefacts involving selection of superfluous axes. This problem

occurred regardless of the forward-selection technique used.

4. Both sample configuration and the underlying linear model used to analyse species–environment

relationships also revealed strong potential to bias results.

5. Synthesis and applications. Several common applications of variation partitioning in ecology

now appear inappropriate. These potentially include decisions for community conservation based

on inferred relative strengths of niche and dispersal processes, inferred community responses to

climate change, and numerous additional analyses that depend on precise results frommultivariate

variation-partitioning techniques. We clarify the appropriate uses of these analyses in research

programmes, and outline potential steps to improve them.

Key-words: beta diversity, canonical ordination, Moran’s eigenvector maps, principal coor-

dinates of neighbour matrices, redundancy analysis, regression on distance matrices, spatial

variation, trend surface analysis, variation partitioning

Introduction

A fundamental challenge in ecology is to understand the deter-

minants of community composition. Traditionally, ecologists

relied on environmental niches to explain community variation

(e.g. Hutchinson 1957), but the role of spatial dynamics, such

as dispersal differences amongst species, has increasingly been

recognized (e.g. MacArthur & Wilson 1967; Hanski 1991).

More recently, neutral models of biodiversity have abandoned

the role of niches altogether, instead emphasizing the ability of

dispersal limitation alone to produce realistic spatial distribu-

tions of competitively equivalent species (Hubbell 2001; Chave

&Leigh 2002). Parallel to these theoretical advances, statistical

tests have been designed to determine the relative importance

of environmental heterogeneity and dispersal limitation in

structuring communities (Borcard, Legendre &Drapeau 1992;

Legendre &Legendre 1998; Borcard&Legendre 2002).

Developments in theory and statistical tests have precipi-

tated dozens of comparative analyses of the influences of envi-

ronmental heterogeneity and spatial dynamics on species
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distributions. For example, Gilbert & Lechowicz (2004) used a

sampling regime that removed spatial autocorrelation in the

environment sampled, and used species’ spatial and environ-

mental correlations to show that the sampled community was

inconsistent with neutral predictions. Cottenie (2005) devel-

oped a framework in which the relative importance of spatial

and environmental correlations was used to infer a range of

processes, from neutral to source-sink to environmental sort-

ing. Several studies have taken similar approaches both for

testing theory (e.g. Tuomisto, Ruokolainen &Yli-Halla 2003),

and for a range of applied ecological questions, from elucidat-

ing scales of isolation in metapopulations (Yamanaka et al.

2009) to developing predictive models for species distributions

under climate scenarios (e.g. Heikkinen et al. 2006).

There is, however, much controversy about the relative mer-

its of the statistical options for partitioning spatial and envi-

ronmental components of variation (e.g. Legendre, Borcard &

Peres-Neto 2005, 2008; Tuomisto & Ruokolainen 2006, 2008;

Laliberté 2008; Pélissier, Couteron &Dray 2008). This contro-

versy over appropriate statistical methods and their interpreta-

tion is important to both theoretical and applied ecology.

Indeed, understanding the theoretical underpinnings of meta-

communities (Cottenie 2005) and the impacts of environmen-

tal changes such as climate warming, land-use change and

eutrophication on biodiversity (e.g. McLachlan, Hellmann &

Schwartz 2007), depends on correctly identifying the processes

that structure species distributions.

In this study, we test the effectiveness of the most commonly

used multivariate partitioning techniques, with a particular

focus on a recently developed and increasingly used approach:

redundancy analysis (RDA) with a principal coordinates of

neighbour matrices (PCNM) spatial matrix. While recent

papers evaluating these techniques (Laliberté 2008; Legendre,

Borcard & Peres-Neto 2008; Pélissier, Couteron & Dray 2008;

Tuomisto & Ruokolainen 2008) have focused almost exclu-

sively onmodelling spatial patterns to infer dispersal limitation

in neutral communities, we took a broader approach by evalu-

ating how well each method performs from modelling both

spatial and environmental processes. Our goal was not to

further develop or test the mechanics of these methods, but

rather to assess how well they represent known causes of

species distributions in simple yet realistic communities.

We partitioned variation amongst simulated communities

using multiple regression on distance matrices (MRDM) and

raw-data approaches (RDA) that differ in both environmental

models (linear and eigenvector) and spatial models [trend

surface, PCNM and Moran’s eigenvector maps (MEM)].

Although previous studies have argued the relative merits of

these different methods (e.g. Pelletier, Fyles & Dutilleul 1999;

Legendre, Borcard & Peres-Neto 2008; Tuomisto &Ruokolai-

nen 2008; Peres-Neto & Legendre 2010), they are all widely

used by ecologists and have yet to be systematically compared.

We began by simulating ecological communities with known

levels of environmental and spatial control of species distribu-

tions, using levels that encompassed c. 90%of studies reported

in the most recent meta-analysis of environment–space parti-

tioning papers (Cottenie 2005). Species distributions in our

simulations were generated through three distinct processes:

response to a spatially autocorrelated environmental gradient,

response to a spatially random environmental gradient, and

source-sink dispersal. We then used each statistical method to

partition the variation explained by environment and space,

and compared this to the known fractions explained. Through

these analyses, we address the following questions: (i) how

accurate is each method at determining both absolute and

relative importance of spatial and environmental drivers; (ii)

does this accuracy change as the relative importance of each

driver changes; and (iii) how sensitive are the statistical

methods to the spatial configuration of sampling regime?

Materials and methods

SIMULATION DESIGN

We designed three sets of communities, with each community con-

structed to represent passive dispersers with distinct levels of environ-

mental control and dispersal effects: one was influenced purely

by environment; one had a large environmental influence and small

dispersal influence; and one had large dispersal and environmental

influences. Each community was created by initially generating a

129 · 129 cell lattice grid, and assigning values from two environ-

mental gradients to each cell. Each cell, which represents one poten-

tial sampling location, was environmentally homogenous internally.

The two environmental gradients differed in that one was spatially

autocorrelated (hereafter Es) and the other was randomly distributed

in space (Er). We began by generating Es to be similar to spatially

autocorrelated gradients observed in natural communities (With &

King 1997; Gergel & Turner 2002). We employed a two-dimensional

random fractal model using the midpoint displacement method

(Saupe 1988), keeping the environmental autocorrelation consistent

across simulations (fractal dimension = 2Æ8), and scaled the simu-

lations so that Es was evenly distributed with values ranging from

0 to 1. The scaled environment maintained the patchy pattern

typical of spatially autocorrelated environmental gradients (Gergel

& Turner 2002; Fig. S1, Supporting information). The second

environmental gradient, Er, was also uniformly distributed with

values ranging for 0–1, but was randomly distributed in space.

We used the environment to structure species’ initial distributions.

The initial abundance of each species was modelled using a unimodal

distribution along each environmental gradient. In particular, we

used the difference between the environmental optima of species k

(Esk) and the environment in cell j (Esj):

fðEsÞ ¼ e
�ðEsk�Esj Þ

2

0�02 : eqn 1

The same function was used for Er (replace Es with Er). The initial

abundance of species k in cell jwas determined as:

Initialkj ¼ 0�75fðEsÞ þ 0�25fðErÞ: eqn 2

As can be seen in eqn 2, the effect of the two environmental gradients

was additive and the gradients were weighted differently. This weight-

ing is arbitrary, but was used to reflect commonly observed differ-

ences in the explanatory power of different environmental variables

(e.g. Gilbert & Lechowicz 2004). Once the initial abundances of

species were determined, we added a dispersal component. We did

this by treating initial abundances as fixed, and weighted all cells

within the community by a dispersal kernel. The dispersal contribu-

tion for species k at cell jwas generated with the following formula:
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Dkj ¼
X

i 6¼j
initialki � fðdistanceijÞ; eqn 3

where initial is from eqn 2, and distance is the Euclidean distance

between sites i and j. The distance function (f) varied amongst

sets of communities, with the first community having no dispersal

component, while the second had f � 1 ⁄ distance2, and the third

had f � e)distance ⁄ 0Æ5. To avoid edge effects, a cell’s initial value

(eqn 2) only weighted cells that were within 32 units, and only

the central 64 · 64 cells of each simulated community were

retained after D was determined.

TheD term was then scaled to give a dispersal component (D¢) that
had, on average, the same magnitude as the environmental compo-

nent, so that D¢kj = Dkj ·
P

Initialkj ⁄
P

Dkj. This dispersal compo-

nent is qualitatively similar to distribution patterns in source-sink

communities of passive dispersers, with the initial environmentally

determined abundance dictating the strength of the source, and the

distance function (eqn 3) determining the spread of sink populations.

The relative importance of the dispersal component in each com-

munity was varied by giving the dispersal component and the envi-

ronmental component different predictive weights in final species

abundances. Final abundances for each species in each cell were Pois-

son random variates with mean abundances equal to 30(ws

D¢kj + weInitialkj). In addition to the distance functions above, the

weighting was varied to generate the three types of communities: one

with no dispersal component (ws = 0, we = 1); one with a minor

dispersal component (ws = 0Æ25, f � 1 ⁄ distance2, we = 0Æ75);
and one with a relatively large dispersal component (ws = 0Æ5,
f � e)distance ⁄ 0Æ5, we = 0Æ5). Graphical examples of the dispersal

components after weighting are shown in Fig. S2, Supporting infor-

mation. We then used the known environmental and dispersal

components to partition the variation in each community. To deter-

mine the variation explained by each variable, we used the standard

multivariate analysis (eqn 1 in Peres-Neto et al. 2006) with the

programmed components (weighted values from eqns 2 and 3) used

as the predicted Y values. These programmed components represent

the true deterministic trends in the data.

SAMPLING DESIGN AND STATIST ICAL ANALYSES

All statistical methods tested use a common framework of partial

analyses to partition the variation explained by spatial and environ-

mental components. For detailed descriptions of partial canonical

analyses, see Legendre & Legendre (1998). In summary, three matri-

ces are required: the species matrix, the environmental matrix and the

spatial matrix. Three analyses are conducted to partition the variation

in the species matrix between the environmental and spatial matrices:

the first uses both the environmental and spatial matrices as predic-

tors of the species matrix, and represents the total variation explained.

The total variation explained is made up of three components:

the environment (E), space (S) and the covariation between the

environment and space (ES). The second analysis uses only the

environmental matrix as a predictor to determine the conditional

(non-independent) environmental variation. When the conditional

environmental variation is subtracted from the total variation

explained, the remaining variation is the independent space effect (S).

The third analysis subtracts the conditional variation explained by

the spatial matrix from the total variation explained to determine the

independent environment effect (E).

All statistical analyses were performed using R v. 2Æ8Æ0 (R develop-

ment core team 2008). For canonical ordinations, we used the ‘pack-

for’ library forward-selection procedure designed by Blanchet,

Legendre & Borcard (2008) to reduce Type 1 error, with each explan-

atory matrix only subjected to forward selection if a test of the entire

matrix was first found to be significant. Species abundances were

transformed using the Hellinger transformation (Legendre & Galla-

gher 2001) (R, vegan library). We also used the ‘varpart’ function (R,

vegan library) to partition variation; this function computes the

adjusted canonical R2, analogous to the adjusted R2 in multiple

regression (Peres-Neto et al. 2006). Environmental variables were not

transformed unless otherwise stated. Statistical tests were assessed for

their accuracy by comparing the variation explained in each compo-

nent with the true variation programmed into the simulated commu-

nities. Specific methods are explained in detail below.

We evaluated MRDM using transformed matrices by creating a

Bray–Curtis distance matrix for each environmental predictor and a

Euclidean distance matrix for geographic distances. All predictor

matrices were log-transformed as necessary. We also performed stan-

dard Mantel tests (Mantel 1967), which are closely related to

MRDM, but differ in that environmental variables have identical

weightings in a single predictive matrix. Because of this difference, we

only report the Mantel results in the Supporting information. Signifi-

cance of both MRDM and Mantel tests was evaluated by permuta-

tion (Legendre &Legendre 1998).

Polynomial Trend Surface Analysis of community data uses poly-

nomial terms of spatial coordinates as variables to model spatial vari-

ation in communities within anRDA. Themethod was first proposed

by Legendre (1990), but relies on previous trend surface modelling

using polynomial terms (reviewed in Legendre & Legendre 1998; Bor-

card, Legendre & Drapeau 1992). It involves generating a spatial

matrix using the centred geographic coordinates of the sampled area.

The spatial matrix consists of nine terms, using a third-order polyno-

mial of the x and y coordinates: x, y, xy, x2, y2, x2y, xy2, x3, y3.

The PCNM technique was designed by Borcard & Legendre

(2002), Borcard et al. (2004) to provide a more flexible method for

explaining spatial relationships with species composition than the

polynomial method, and as an attempt to account in a systematic

way for different scales of spatial dependence. The technique repre-

sents the spatial configuration of sample points using principal

coordinates of a truncated distance matrix amongst points. The

resulting PCNM axes with positive eigenvalues are used as spatial

components in variation partitioning, with each axis potentially

modelling species clustering at different distances amongst sampling

units. We used the R package QuickPCNM v. 7Æ7Æ1 (available at

http://www.bio.umontreal.ca/legendre/) to generate the spatial

PCNM axes for this analysis.

The MEM technique was introduced by Dray, Legendre & Peres-

Neto (2006) as an improvement to the PCNMmethod. A full descrip-

tion of the method is given in Dray, Legendre & Peres-Neto (2006).

For our analysis, we used the samemethod to generate axes as for the

PCNM, but only retained those axes that were strongly and positively

spatially structured based on Moran’s I (using the spacemakeR

library inR;Dray, Legendre & Peres-Neto 2006).

It should be noted that there is debate over how to deal with

degrees of freedom when using eigenvector approaches such as

PCNM orMEM. One issue is how to penalize the inclusion of multi-

ple eigenvectors, when several eigenvectors may be modelling a single

spatial process. Our approach with the PCNM and MEM methods

was to count each eigenvector as a single predictor – this approach is

the most conservative in its penalization of degrees of freedom and

adjustedR2 statistics.

In addition to the various spatial models used in RDA, we used

one transformation that included environmental variables that we

term PCNMe. Species in our simulated communities, and often in
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ecological communities generally, have unimodal relationships along

environmental gradients. We suspected that the linear regression

approach used to fit environment–species relationships in RDA

might be a poor model of this phenomenon. While canonical corre-

spondence analysis (CCA) should in theory represent unimodal spe-

cies ⁄ environment relationships well (ter Braak 1985), CCA suffers

from poor performance in simulations (Økland 1999) and problems

with its underlying distance metric (Legendre & Gallagher 2001).

Other options are to transform environmental variables to linearize

relationships, or examine more complex relationships directly

through testing various transformations at once (e.g. Jones et al.

2008). We explored the latter concept through an analysis of PCNM

axes from both spatial and environmental variables. In other words,

we generated PCNM axes for each of the environmental gradients,

using the same criteria that we used for spatial variables. This is simi-

lar to other transformations of the environmental gradient, but we

felt it may better model unimodal trends than other approaches, such

as quadratic transformations, based on results reported in Borcard &

Legendre (2002). The steps involved in the analysis are the same as

the PCNM analysis, with three resulting matrices (one spatial and

one for each environmental gradient).

EFFECT OF SAMPLING REGIME

While it is recognized that both scale and sampling effort may influ-

ence results in spatial analyses, especially with nonlinear decay in sim-

ilarity (Fortin&Dale 2005), there has been no systematic comparison

of the relative importance of these influences amongst community

variation-partitioning tests. We sampled 500 simulated communities

for each community type, using three sampling configurations (con-

tiguous sampling, random sampling and uniform sampling) at two

different levels of sampling effort: 64 cells and 256 cells (Supporting

information, Fig. S3) for a total of 9000 analyses per statistical

method.

ADDIT IONAL STATIST ICAL ANALYSES

Given a current trend towards using PCNMorMEMas the preferred

means of accounting for spatial variation in community data, and in

light of results reported below, we decided to further investigate the

details of data fitting in these methods. This further exploration was

conducted on a single simulated species distributed unimodally along

a linear transect, with simulations run to determine the effect of spe-

cies abundance and unexplained variation on forward selection and

overfitting. The basic approach used was similar to that described in

Borcard & Legendre (2002) for detecting Gaussian curves, with a

deterministic abundance structure programmed into the species

distribution and variable levels of unexplained variation also

included. Full details of these simulations are given in the Supporting

information.

We also tested a new forward-selection procedure proposed by

Peres-Neto & Legendre (2010). This method involves testing the sig-

nificance of each eigenvector for each species if the spatial matrix is

globally significant. Because this technique is not yet widely used and

was found to exacerbate problems with selecting eigenvectors, we

present the methods and results in the Supporting information.

Results

The simulated communities were constructed with known lev-

els of environmental and dispersal effects (from we, eqns 1 and

2 and D¢), which allowed us to separate the actual variation

explained by the dispersal component alone, the environmen-

tal gradients alone, and the covariation between the environ-

ment and dispersal (Table 1). However, unlike our

calculations of the true variation explained by each compo-

nent, the statistical methods used may also model part of the

independent environment as ES. This is a recognized behav-

iour of these statistics (Legendre &Legendre 1998), and occurs

because one environmental variable is spatially autocorrelated.

To compare between the known variation explained and that

found in the models, we therefore compare the S portion from

the statistical models with our independent dispersal effect.We

also compare the sum of E and ES from the statistical models

with the summed contribution of the environmental gradients

and the environment-dispersal covariation (Fig. 1, left panel).

For these tests, we first use the 256 contiguous sample configu-

ration to compare across methods and communities (Fig. 1).

In addition, we assess the accuracy of the tests by comparing

the relative contribution of S [i.e. S ⁄ (S + E + ES)] across

models (Fig. 1, right panel).

All techniques exhibited unexpectedly large differences in

explained variation from the true variation in the data set

(Figs 1 and 2, Supporting information, Fig. S6). Inmost cases,

the amount of explained variationwas considerably lower than

that programmed into the data set, supporting the conclusions

of Økland (1999) and others who have noted that high

amounts of unexplained variability may mislead researchers

into thinking their results are not meaningful. However, devia-

tions from the true variation explained were not consistent.

Instead, the different techniques were often biased in over-rep-

resenting one component of variation relative to another

(Fig. 1).

In addition to differences amongst methods, all analyses

showed sensitivity to sampling configuration (Fig. 2). Regard-

less of the statistical method used, communities sampled using

Table 1. Levels of explained variation in simulated community types

Community type

Number of simulated

communities

Independent

environment

Independent

dispersal

Environment-dispersal

covariation

No dispersal component 500 89 0 0

Small dispersal component 500 77 1 7

Large dispersal component 500 45 13 22

Note: The simulated communities were constructed with known levels of environmental determinism (from we, eqns 1 and 2), and a

known scaled dispersal component (D¢), allowing us to separate the independent effects used to test variation partitioning techniques.
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contiguous plots consistently produced a higher S component

than those sampled with larger distances between cells when

there was an independent dispersal effect (Fig. 2). The configu-

ration of spaced plots (uniform vs. random) had little effect,

but sampling effort and spacing amongst plots had a large

effect, due both to changes in statistical power and to dispersal

patterns occurring mainly at relatively fine scales (Supporting

information, Fig. S2). For example, in uniform and random

sampling regimes, the PCNM and MEM methods modelled

the relative importance of space as doubling between samples

with 64 cells and those with 256 (Fig. 2). Below, we outline in

detail the results for each statistical method tested.

The MRDM technique represented the environmental sig-

nal well, and was in fact better at modelling this signal than the

linear model used in the RDA techniques (Fig. 1, A5). How-

ever, the MRDM was poor at modelling spatial patterns

(Fig. 1, S4).

Redundancy analysis using polynomial trend surfaces to

model the spatial signal explained less variation than was

programmed into the simulated communities, although

there was no consistent bias towards over- or under-repre-

senting the relative importance of components (Fig. 1).

Instead, the polynomial approach tended to over-represent

S when this component was actually low, and under-repre-

sent it when it was high. In particular, the polynomial trend

surface modelled an independent spatial signal in the com-

munity where none existed (Fig. 1), and overfit the indepen-

dent spatial signal in the community with a small spatial

component by nearly double (Fig. 1). This overfitting of the

spatial component may not result from a problem with the

spatial model per se, but rather a poor fit by the environ-

mental model. In particular, the linear model that is used as

a default in RDA provides a very poor fit for most species

(Fig. 3). When there is a poor fit between the environment

and species matrices, the polynomial trend surface could

model species distributions along the spatially structured

environment better than linear regression with the environ-

ment, and then attribute some of this variation to the inde-

(a)

(b)

(c)

Fig. 1. Comparison of all methods in the 256 contiguous sampling regime (16 · 16 cells), the regime at which the maximum spatial signal could

be detected. The far right bar in all graphs shows the actual variation explained by each component. Red represents the independent environment

signal (E); blue represents the independent spatial signal (S); purple represents space–environment covariation (ES); grey represents unexplained

variation. Left hand graphs present absolute variation explained. Dashed horizontal lines mark the known combined E and ES. The accuracy of

each method is measured by how well the estimates of these two components match the known E and ES components (bar on far right) and also

how close in size the S component is to its true value. Right hand graphs present proportional variation explained by S [i.e. S ⁄ (E + S + ES)].

Error bars show one standard deviation.
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pendent spatial component rather than space ⁄ environment

covariation.

The eigenvector techniques (PCNM and MEM) produced

results that were virtually indistinguishable. In the contiguous

sample configurations, they predicted greater S than was truly

present in all simulated community types (Fig. 1), and also

produced biased results for the relative importance of space

[i.e. S ⁄ (S + E + ES)]. This bias favoured the S component,

representing it as larger than what was modelled into the simu-

lations (Fig. 1), with PCNM producing slightly larger esti-

mates of S than MEM. The bias in the eigenvector techniques

probably resulted from two processes: a poor modelling of the

E component using the linear model (Fig. 3) and overfitting

the S component.

Further analysis revealed that using PCNM axes as predic-

tor variables can indeed greatly inflate the variation explained,

even when an adjusted R2 is used (Figs 3 and 4). To under-

stand the accuracy of the PCNM method, we considered its

performance using species distributions along two gradients

that were uncorrelated with each other. In the simulated com-

munities with no pure spatial component, the environmental

gradients (Es andEr) were uncorrelated, while in the other sim-

Fig. 2. The effect of the different samplingmethods on each of the raw-data (RDA) analyses for Community 3 (large independent spatial signal);

segment colours as per Fig. 1. Left hand graphs present absolute variation explained, while right hand graphs present the independent spatial sig-

nal as a proportion of explained variation: S ⁄ (E + S + ES). For uniform and random configurations, ‘fine’ refers to analyses with 256 lattice

cells sampled and ‘coarse’ refers to those with 64 lattice cells sampled. ‘Contig’ refers to contiguously sampled cells (Supporting information,

Fig. S3). Distance-based tests were consistently far inferior at modelling spatial patterns, and are not presented here (but are presented in

Supporting information, Figs S4 and S5). Error bars show one standard deviation.
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ulations, only Er was uncorrelated with the other drivers (the

spatial function and ES are correlated by definition). Thus, Es

and Er were examined for the PCNMe in simulations with no

pure spatial component (Figs 3 and 4). Examination of the

variation explained by these PCNMe models (Figs 3b and 4c)

illustrated the risk of inflation of variation explained in the

PCNM method. In simulations with no pure space compo-

nent, the PCNMe for the ES gradient did a reasonable job at

fitting trends; however, the PCNMe for Er explained over two

times its actual variation explained when PCNMe axes were

selected. The over-inflation appeared to be partly due to an

anomaly that occurs in the selection of both PCNM and

MEM axes (Fig. 3c, Supporting information, Fig. S13). The

distribution of the number of PCNM and MEM axes selected

was bimodal, with one mode at zero (no axes selected) and the

other close to 10. The structure of the eigenvectors appears to

make selection of subsequent axes more likely once one has

already been selected. Similar bimodal distributions of selected

axes were in fact found for all gradients (spatial and environ-

mental) with relatively low explanatory power (<10% true

variation explained) across all simulations, and occurred

despite use of the forward-selection procedure designed by

Blanchet, Legendre & Borcard (2008) to correct for Type 1

error. Implementation of a newer forward-selection procedure

(Peres-Neto & Legendre 2010) exacerbated this problem (see

Supporting information), and we therefore focused our subse-

quent tests on the Blanchet, Legendre &Borcardmethod.

Additional analyses using a single simulated species along a

linear transect (Fig. 4; Supporting information, Figs S7–S11)

indicated that regression using PCNM and MEM axes can

cause a positive feedback whereby selecting some axes

increases the chance of selecting additional axes, perhaps due
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Fig. 3. Variation explained by linear and PCNMe models in simulations with no independent space. (a) Percentage variation explained by the
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to patterns created in residuals after fitting initial axes (Sup-

porting information, Fig. S9). The increased number of axes

selected can in turn inflate the explained variation by large

amounts (Fig. 4; Supporting information, Figs S10 and S11).

Greater spread of species abundance along a transect and a

greater amount of background noise in the data both result in

a greater problem with overfit (Fig. 4; Supporting informa-

tion, Figs S10 and S11). Our simulation results found that the

eigenvector approaches (MEM and PCNM) behaved simi-

larly, with the MEM being only slightly more conservative

(Supporting information, Fig. S11). These results are consis-

tent with the community simulations (Figs 1 and 2), and sug-

gest that eigenvector analyses are prone to statistical artefacts

that inflate the variation explained.

Discussion

Despite recent and intense debates on the relative merits of the

methods tested here (Legendre, Borcard & Peres-Neto 2005,

2008; Tuomisto & Ruokolainen 2006, 2008; Laliberté 2008;

Pélissier, Couteron & Dray 2008), we found that all methods

failed to correctly model the relative importance of environ-

mental and dispersal drivers of community composition

(Figs 1 and 2). Indeed, each analysis performed best under lim-

ited circumstances that could not be known a priori in real eco-

systems, and therefore no single technique that we tested can

be recommended over the others. From a statistical viewpoint,

this failure resulted from improper models of both spatial and

environmental signals (Figs 1 and 3). In addition, the chal-

lenges associated with selecting an appropriate sampling scale

may be equally important as the influence of the statistical

method (Fig. 2).

Although we have identified several pitfalls of using incor-

rect sampling or statistical methods, the questions addressed

by studies that partition environmental and spatial controls of

community composition are important to both basic and

applied ecology (e.g. Jones et al. 2006; Legendre et al. 2009).

Moreover, these questions are likely to increase in importance

as anthropogenic environmental change proceeds. The chal-

lenge for ecologists is therefore twofold: to determine when

and where the current statistical methods may yield reasonable

results, and to develop better methods for partitioning spatial

and environmental correlates.

STATIST ICAL CONSIDERATIONS

Although our results indicated that no method was consis-

tently good at modelling the relative importance of spatial and

environmental drivers of community composition, somemethods

performed better than others. For example, MRDM failed to

adequately model spatial patterns in our simulations, which pro-

duced strongly biased estimates of the S andESportion of species

distributions in simulations that had a dispersal component.

Mantel-type tests have previously been shown to produce lower

correlation coefficients than RDA (Dutilleul et al. 2000; Legen-

dre, Borcard & Peres-Neto 2005), and variation partitioning

using distance matrices has been criticized for failing to represent

the true variation in species distributions (Legendre, Borcard &

Peres-Neto 2005, 2008). Our findings support previous criticisms

ofMantel-type methods (Legendre, Borcard & Peres-Neto 2005,

2008).Regardless of the philosophicalmerits of distance-based or

raw-data basedmethods for testingbeta diversity (Legendre,Bor-

card & Peres-Neto 2005; Tuomisto & Ruokolainen 2006), it is

clear that correlations based on distance matrices are inferior to
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Fig. 4. Overfitting by the PCNMas a function of the amount of unex-

plained variation in simulations, the abundance of the species and the

number of selection-dependent PCNMaxes included through the for-
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transect for four different simulation conditions. (b) Exacerbation of
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dependent axes (i.e. those selected via forward selection, but not

significant when tested independently), increases. The colours show

the spread of the species (from a), and each panel shows simulation
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ground noise. Full results with all data points are presented in the

Supporting information.
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RDA for modelling spatial patterns. Given that several

approaches to species distribution models use similar dis-

tance-based approaches to model spatial dependency in

species distributions (e.g. Allouche et al. 2008), this concern

could extend to a range of modelling applications.

WhileMRDMfails to adequatelymodel spatial patterns, the

PCNM and MEM approaches suffer the opposite problem.

Indeed, despite the recent popularity of these methods for

detecting spatial patterns (e.g. Brind’Amour et al. 2005; Soini-

nen & Weckstrom 2009), our results indicate that eigenvector

methods can inflate the variation explained by a given causal

process (Fig. 1). The over-estimation of variation explained

was consistent even in simulationsof a single species alonga sin-

gle spatial axis (Fig. 4, Supporting information), and resulted

inR2
adj values that were up to 0Æ5 higher than actualR2 values,

with averageR2
adj values inflated by 0–0Æ25 (Fig. 4, Supporting

information). Visual inspection of PCNMe axis fitting indi-

cated that some of this overfitting is due to eigenvector axes

accounting for random noise (Fig. 3d). We also found that

there is an increased likelihood of selecting eigenvector axes

once one axis has been selected, even though the conservative

forward-selection procedure developed by Blanchet, Legendre

& Borcard (2008) was used. Not surprisingly, the inflated R2

statistics often occurred in conjunction with additional axes

being selected (Fig. 4). The inflation of R2 statistics and the

irregularities in the forward selection of eigenvectors indicate

that the PCNM andMEMmethods are unstable and vulnera-

ble to statistical artefacts.These issuesmust be addressedbefore

the results of these analyses canbe considered trustworthy.

Despite the problems encountered with the eigenvector tech-

niques, they have a number of desirable aspects (Borcard et al.

2004), including decomposition of spatial scales for analysing

scale-dependent community structuring. The future challenge

for statisticians will therefore be to incorporate these strengths

within a more robust approach to generation and selection of

spatial variables directly relevant to the ecological questions

being posed.

In addition to issues with the spatial models used in multi-

variate partitioning, our analyses also indicate that the default

linear models are insufficient to model community–environ-

ment relationships (Fig. 3). Although this problem has been

recognized for some time (ter Braak 1986), recent develop-

ments in multivariate partitioning have focused almost exclu-

sively on increasing the complexity of the spatial model used

(e.g. Borcard & Legendre 2002; Borcard et al. 2004;

Dray, Legendre & Peres-Neto 2006; Peres-Neto & Legendre

2010). In the application of these methods, complex spatial

relationships are almost always tested against single linear

terms for environmental variables. This approach is analogous

to comparing theR2 of a linear regressionwith that of a general

additive model. However, even standard transformations of

the environmental data may not be sufficient to represent the

importance of environmental processes relative to the poten-

tially inflated spatial signal generated by eigenvector analyses.

For example, we reran a subset of the analyses using linear and

quadratic terms for the environmental variables and eigenvec-

tors for the spatial model (results not shown). While this did

improve the accuracy of the results somewhat, we nonetheless

found a 99% ‘false positive’ rate, where simulated communities

with no programmed independent spatial signal erroneously

showed a statistically significant independent spatial signal.

The problem of finding appropriate transformations for

environmental data is often evenmore critical than is suggested

by our simulated communities, which contain simple unimodal

responses along two environmental gradients. There is ample

literature to indicate that complex environmental influences,

including interactions amongst variables, often occur. How-

ever, including numerous, complex environmental predictors

without a priori justificationmay also lead to problems of over-

fitting, especially if interactions amongst all variables are con-

sidered. More flexible ordination techniques that fit response

curves based on maximum likelihood solutions (e.g. Yee 2004,

2006) may offer new avenues for more balanced approaches to

modelling the environmental component in variation-parti-

tioning analyses, although these models also pose challenges in

terms ofmodel convergence and incorporating complex spatial

and environmentalmodels into a single framework.Regardless

of the approach taken, we suggest that environmental and spa-

tial models be developed at carefully considered and logically

defensible levels of complexity.

CONSIDERATIONS FOR EMPIRICAL STUDIES

Ecologists have used multivariate partitioning of environmen-

tal and spatial correlates extensively, with goals that range

from contrasting theoretical hypotheses (e.g. Cottenie 2005),

to modelling species distributions, (e.g. Karst, Gilbert & Lech-

owicz 2005; Spiesman & Cumming 2008), to informing man-

agement decisions (e.g. Kohler et al. 2006; Urban et al. 2006).

Our results indicate potential problems with such analyses.

Comparison of studies using different sampling or statistical

techniques is problematic, as the methods we tested exhibit

quite different behaviour and can lead to different conclusions,

even when analysing the same community. Interpretations of

results in many individual studies may also be suspect, espe-

cially when ecologists have relied on precise estimates from

partitioning analyses. Despite these downfalls, partitioning

analyses are nonetheless useful for a number of applications.

While we cannot address every possible use of partitioning

analyses, our study provides insight into the appropriateness

of several applications.

Testing ecological theory directly with environment–space

partitioning analyses can be particularly difficult using the

methods we critique, because many theories incorporate both

a species–environment relationship and a species–space rela-

tionship (through species interactions or dispersal, Leibold

et al. 2004; Snyder&Chesson 2004). However, specificmodels,

such as a spatial neutral model (Chave & Leigh 2002; Condit

et al. 2002) can be tested directly if other confounding factors

are controlled (e.g. space–environment correlation, Gilbert &

Lechowicz 2004). Other models that explicitly predict the role

of spatial processes, such as neighbour competition, can be

tested directly without the need for partitioning analyses (e.g.

Fajardo&McIntire 2007).
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Several authors have suggested that studies can discriminate

amongst theoretical hypotheses based on the relative strength

of the environmental and spatial components of a partitioning

analysis (e.g. Cottenie 2005; Soininen & Weckstrom 2009).

Apart from the concern that many theoretical hypotheses have

no specific link to the spatial models used (e.g. PCNM axes

and neutral theory; Tuomisto & Ruokolainen 2008), our

results indicate that the observed relative importance of differ-

ent components is sensitive to both sampling and statistical

methodology. For example, Cottenie (2005) tested a specific

theoretical framework by partitioning variation in numerous

data sets that utilized a variety of sampling configurations.

Although Cottenie’s framework was valuable for advancing

theory, our results indicate that both the technique used (poly-

nomial RDA) and the scale of sampling may have led to false

conclusions. For example, the theoretical framework tested

relied critically on whether an independent spatial component

(S) was present; in our simulated communities the same type of

analysis found a significant S component 89% of the time even

when there was no true dispersal component (Fig. 1a).

Such fundamental problems with partitioning spatial vs.

environmental control of communities also have profound

implications for applied ecologists. Variation partitioning of

community data has been used in numerous and diverse appli-

cations. For example, variation partitioning using PCNM to

represent spatial signals was used by Kohler et al. (2006) to

model the type and intensity of cattle effects at different scales,

and by Urban et al. (2006) to infer a high spatial signal in

stream communities, and thus recommend the maintenance of

corridors through urban areas. All such applications make the

crucial assumption that the sample configuration and analyti-

cal technique are adequate to address the issue at hand.

In addition, the theoretical frameworks that have been

extensively evaluated using partitioning techniques have well-

documented and divergent management ramifications. For

example, management according to Neutral Theory implies

that distinct characteristics of habitats on a landscape are

unimportant relative to habitat area, and that communities

may be restored if an adequate number of propagules, rather

than specific habitats, are preserved (Daleo, Alberti & Iribarne

2009). Management approaches that account for species-spe-

cific niches require that amenable extrinsic conditions are also

preserved or restored (Tuomisto, Ruokolainen & Yli-Halla

2003). Ecologists relying on flawed estimates of the relative

importance of habitat conditions risk making suboptimal deci-

sions for restoration ormaintenance of biodiversity.

Based on these concerns, we suggest that ecologists use two

approaches when testing the spatial and environmental drivers

of species distributions. First, the appropriate scale of sampling

must be determined. Just as our results indicate that certain

spatial processes are hard to detect when the sampling design is

too coarse (Fig. 2), other spatial and environmental processes

are sensitive to the extent of the area sampled (Fortin & Dale

2005). A first step is to consult the considerable literature on

spatial sampling that explores trade-offs amongst sampling

designs (e.g. Fortin &Dale 2005; Schlup &Wagner 2008), and

likewise to examine previous studies on the organisms of con-

cern to determine if they demonstrate sampling-dependent

results. Where previous tests are not available, process-based

models can be used to predict how sampling designs can cap-

ture patterns that would emerge from different ecological pro-

cesses, thus informing sampling procedures which then test

thesemodels.

Second, we suggest that the results from specific studies be

tested with independent supporting analyses or experimental

studies. For example, Moore & Elmendorf (2006) performed a

seed addition experiment to test sampling-generated hypothe-

ses about the degree of microsite and propagule limitation in

grassland plants. Similarly, Karst, Gilbert & Lechowicz (2005)

used independent surveys to test for consistency in species’

environmental niches.

The key message is that studies should not rely on precise

differences in variation explained by spatial and environmental

correlates to infer the exact proportional strength of each

effect. The initial partitioning is a first step, and exploring spe-

cies distributions with more specific models or experimental

tests is critical.

Conclusions

When tested against realistic simulated communities, the

most common variation-partitioning models fail to accu-

rately represent environmental and spatial components of

community variation. This failure results from poor environ-

mental models, poor spatial models, or both. Despite these

problems, there is a growing need for accurate models, both

for basic and applied ecology. We suggest that statisticians

continue to develop more robust spatial and environmental

models of community composition. Multivariate methods

for inferring environmental and spatial controls of species

distributions are in their infancy, and new developments are

likely to improve accuracy. Until such models are developed

and tested, we suggest that empirical ecologists use multivari-

ate partitioning analyses mainly as exploratory tools to

develop hypotheses about the environmental and spatial

determinants of species distributions.
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Fig. S1. An example of one species’ distribution from a simulation of

a community with a high space component.

Fig. S2.The effect of the dispersal kernel after weighting.

Fig. S3.Uniform and random sampling configurations used for anal-

yses.

Fig. S4.Variation explained by the basicMantel test.

Fig. S5. The effect of the different sampling methods on Mantel-type

analyses.

Fig. S6. The effect of the different sampling methods on all analyses

for the simulated community with no true independent spatial signal.

Fig. S7. Simple linear transect simulation to explore PCNM forward

selection.

Fig. S8. Predicted fits for the three independently significant PCNM

axes for simulated individual species.

Fig. S9. Distribution of residuals after the first three independently

significant PCNM axes had been fit to an individual simulated spe-

cies.

Fig. S10. Inflated R2 from PCNM axes (PCNM R2 – True R2) for an

individual simulated species.

Fig. S11. Inflated R2 from MEM axes (MEM R2 – True R2) for an

individual simulated species.

Fig. S12. Comparison across community types of MEM method

using species-by-species forward selection vs. standard forward selec-

tion.

Fig. S13. Histograms showing examples of bimodal selection of

MEM spatial eigenvectors using species-by-species forward selec-

tion.
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