
Supplemental Material 

S.1. Interaction strength measurements 

In the main text, we develop an energetic measure that is closely aligned with consumer relative 

biomass (eqn. 3, Fig. 2a). This measure, close to Paine’s 1980 definition, is given as the ratio of 

resource density without consumers to resource density with consumers: Rwithout/Rwith (eqn. 4). 

The resource equilibrium density with predators is commonly referred to as R*. We use the 

equilibria solutions of the consumer-resource model (eqns. 1, 2) with logistic growth and a Type 

1 functional response to solve for this metric: 
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Note that this measure increases (becomes more positive) as the consumer has larger effects on 

resource, whereas most measures of interaction strength become more negative (below). When 

comparing to measures of interaction strength, it is therefore most relevant to compare BCR with 

the absolute value of the other measures.   

There are several measures of interaction strength that are quantitatively and qualitatively 

different from our metric but that capture some measure of consumer resource flux. We outline 

these below by extracting aggregate parameters that result from applying these tests to the same 

consumer-resource model (eqns. (1 and 2) with a Type 1 functional response and logistic growth 

of the resource) when populations reach equilibrium.  

Paine’s (1992) per capita interaction strength is an empirical measure: 
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As evident from S2, this measure is the ratio of consumer attack rate (without considering uptake 

efficiency or loss, e or m) to one measure of resource biomass accumulation.  

A simpler measure comes from the community matrix (Levins 1968 as summarized by Laska 

and Wooton 1998), which measures the per capita effect of the consumer on an individual of the 

resource. We consider the impact of consumers on resources, given by the partial derivative: 
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Where the tilde indicates the equilibrium density of the consumer or resource. When considering 

the impact of the resource on the consumer, the community matrix would have an interaction 

strength of ea. In the latter case, the community matrix approach generates a measure that is 

equivalent to what we term consumption efficiency.  

The Jacobian matrix differs from the community matrix in that it measures the per capita effect 

of the consumer on the resource population (May 1973, reviewed in Laska and Wooton 1998). 

Again, the element of this matrix that measures the effect of the consumer on the resource is 

given by: 
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Here, the absolute value of the interaction strength is negatively correlated with BCR (eqn. S1), all 

else being equal. 

Finally, the negative inverse of the Jacobian measures the total direct and indirect effects of the 

consumer on the resource, and is given by: 
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Although this measure appears quite complex, it can be rewritten as: 
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Which quantifies interaction strength as inversely proportional to the equilibrium density of the 

consumer and its consumption efficiency.  

Finally, the log response ratio (Berlow et al 1999, 2004; Laska and Wooton 1998) is an empirical 

measure that is used over short time scales. Unlike many indices, it can be measured away from 

the equilibrium, and is given as: 
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Where Δt is the length of time. When a Type I functional response is an appropriate model, eqn. 

S7 provides an estimate of the consumer attack rate (a) if the timeline of the experiment is short 

enough to prevent large changes to population sizes (Laska & Wootton 1998; Novak & Wootton 

2010). As can be seen from eqn. S7, anytime f(R) is not linear (i.e. anything but a Type I 

functional response), the interaction strength will depend on the resource density. In other words, 

a different ISLRR would result from an identical system that differs in the density of the resource 

at the outset of the experiment. Novak and Wooton have proposed an alternate approach to 

determining ISLRR for a Type II functional response, noting that twice as many treatments are 

required to estimate both per capita attack rates and handling time (Novak & Wootton 2010). 

Over long timescales, any form of density dependent growth in the prey will cause this measure 

to deviate from the parameter(s) that it is designed to estimate (Berlow et al. 1999).  



Note that each of these measures of interaction strength is relevant to different aspects of 

consumer-resource dynamics (Berlow et al 2004, Laska and Wooton 1998), as is discussed in the 

main text. 

 

S.2. The Relationship between Consumer Relative Growth, Resource biomass 

accumulation and C-R Isoclines 

The Lotka-Volterra with logistic growth produces increased C:R ratios with increases in the 

consumer relative growth rate (ae/m) or similarly, increased C:R ratios occur with increases in 

resource biomass accumulation (K; Fig. 1). Additionally, this increase in C:R ratio with increases 

in the flux parameters is accompanied by a decrease in stability over a large range of BCR values 

(i.e., the real eigenvalues becomes less negative). In a stochastic setting, this reduced stability 

translates into increased variability in population dynamics (e.g., Rip and McCann 2011).  

Collectively, within this framework and employing the simple model system (eqn. 1 and 2), we 

can make the following general predictions for relative growth and resource biomass 

accumulation from this C-R model: 

Relative Growth  

1) Increasing relative growth rate (ae/m) tends to increase C* and decreases R*;  

2) Increasing relative growth rate (ae/m) tends to increase C*:R* ratio;  

3) Increasing relative growth rate (ae/m) tends to increase stability if the C*:R* ratio is 

initially low, but has the opposite effect if the C*:R* ratio is initially high (Fig. 2b).  

Resource biomass accumulation  



1) Increasing resource biomass accumulation (K) tends to increases C* and not change R*; 

2) Increasing resource biomass accumulation (K) tends to increase the biomass ratio C*:R*;  

3) Increasing resource biomass accumulation (K) tends to increase stability if the C*:R* 

ratio is initially low, but has the opposite effect if the C*:R* ratio is initially high (Fig. 

2b). 

Mathematically, these results can be seen by looking at the response of the isoclines to change in 

the associated parameters (Fig. S1). Figure S1a identifies the general influence of the growth 

parameters and Fig. S1b identifies the influence of increasing the resource biomass accumulation 

term. Importantly, these general bioenergetic ideas can be extended to other plausible consumer-

resource models and easily interpreted.  

Having elucidated a way to bioenergetically understand the predicted dynamic outcomes of 

consumer-resource models, it is of use to take these results and interpret them in terms of 

common empirical removal experiments (i.e., remove the consumer).  These experiments 

measure the change in equilibrium before the perturbation (i.e., the equilibrium C*, R*>0), and 

after the perturbation (i.e., removal of predator; C*=0, R*=K). Thus, a metric for this 

experimental BCR can be defined by eqn. (S1). The relationship between the biomass 

accumulation and experimental outcome are depicted in the example of Fig. S1c,d. Figure S1c 

shows a strong net flux and the corresponding strong removal outcome (follow arrows); while 

Fig. S1d shows a weak net flux and a corresponding weak removal response. The important 

point here is that the vital rates governing the flux are the mechanisms behind the experimental 

outcomes. The above result is extended to the 3 species food chain case in Fig. S2. 

 



S.3. Food Chains, Relative Growth Effects and Experimental Interaction Strengths 

The above relationship can be extended to the simple food chain version of the Lotka-Volterra 

model. Figure S2a depicts a reduced nullcline for the three-dimensional food chain. A reduced 

nullcline is a simple trick for food chain models in which the consumer-resource phaseplane 

completely identifies the C and R equilibrium densities for both the entire food chain (rightmost 

dot in Fig. S2a) and the C and R equilibrium densities for the consumer-resource interaction 

alone. This is possible because the consumer and resource isoclines are invariant with P and so 

extend out into the predator dimension without changing their intersection point (see McCann 

and Yodzis 1993, for detailed discussion). 

Given this, Fig. S2a shows the C and R equilibrium with predator (the right side, lower dark 

circle shows the density for C* and R* with the predator P*) and after the predator removal (the 

extreme upper left dot). Thus, in Fig. S2a, two strongly coupled relative growth effects mediate a 

large experimental BCR result (the arrow shows the large shift in R).Similarly, Fig. S2b shows 

two weak relative growth effects and a weak BCR. 

Mathematically, this phenomenon can be seen by examining a 3-dimensional food chain in its 

general form (as in eqns. 1 and 2): 
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In the absence of the top predator (P), eqn (S8) reduces to eqns (1 and 2). When the predator is 

present, the equilibrium abundance of the consumer is equal to m(P)/epg(C), or 1/Predator 

Relative Growth, and the productivity of the consumer is the ratio of the consumer’s 

consumption and conversion of available resources to its mortality rate: 
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This measure of productivity is identical to the ratio used to determine K for the resource, and 

turns out to be the equilibrium C when the predator is absent. Not surprisingly, BPR measured 

between the resource and the predator (i.e. the ratio of resource abundance with the predator 

absent vs present), contains both the effect of the consumer on the resource (BCR) and the effect 

of the predator on the consumer (BPC). Indeed, it is bounded so that its inverse can never exceed 

BCR, as is shown graphically in Fig. S2.  Another way to consider this is that by preying on the 

consumer, the predator increases the abundance of the resource, but never beyond the abundance 

that the resource would achieve with the consumer absent.  

As with BCR, increasing the strength of BPC (by having a strong effect of the consumer on the 

resource and the predator on the consumer) creates the familiar unimodal stability relationship 

seen in Fig. 2b (McCann 2012). Although measures of resource biomass accumulation (sensu 

eqn. 3) become less meaningful as impacts are measured across multiple trophic levels, the pool-

based definition of the resource without vs. with the focal trophic level remains an appropriate 

measure (Fig. S2 and eqn. 4). Finally, it is important to note that BPR, measured between the 

resource and the predator, is the inverse of that between any adjacent two levels because the 

presence of the predator increases the resource biomass. In this case, it can be measured on the 

logarithmic scale to compare the size of BPR with BCR.    



S.4. Short- versus long-term dynamics 

Consumer-resource models often have short-term dynamics that are qualitatively different from 

the long-term dynamics of the system.  When consumer and resource abundance is plotted so 

that consumers are on the y-axis and the resource on the x-axis, the dynamics of the system when 

not at equilibrium often result in a counter-clockwise movement of abundances. In other words, 

as consumer densities fall, resource densities increase, which subsequently causes an increase in 

consumers, and so on. This cycling behaviour is exhibited whenever the leading eigenvalue of 

the Jacobian matrix is imaginary, which occurs over the range of conditions that leads to lower 

stability with an increase in BCR (Fig. 2, black line to the right of its peak). 

The plane that represents consumer-resource abundances has few zones where the direction of 

change of the consumer and resource are pointing towards the long term equilibrium (Fig. 4). 

These zones, shaded grey in figure 4, have one edge defined by the line where the consumer is at 

its equilibrium abundance and the other edge defined by the zero growth isocline of the resource 

(i.e. the density of the consumer where the resource growth is zero).  The zone where short and 

long term dynamics coincide occurs where the zero growth isocline lies above the consumer 

equilibrium abundance when the resource abundance is low (i.e. to the left of the resource 

equilibrium) and above the consumer equilibrium when the resource is high (to the right of the 

resource equilibrium). These conditions for short and long term consistency in consumer-

resource changes are most easily met with a Type 1 functional response, where the zero-growth 

isocline is a straight line. Consumer-resource interactions with Type 2 or Type 3 functional 

responses have smaller zones that can also be determined by examining the intersection of the 

equilibria and the resource zero growth isocline.  



In experiments, short and long term changes will coincide most when the starting conditions fall 

along the resource zero growth isocline (Fig. 4).  By examining the effects of changes in relative 

growth (ΔRG) or carrying capacity (ΔK) on the C-R isocline graphs, it is apparent that changes to 

relative growth shift the equilibria along the resource isocline (Fig. S1A), and these asymmetries 

are therefore most likely to cause similar short and long term dynamics. Changes in the carrying 

capacity shift the equilibria vertically (Fig. S1B), causing short and long term dynamics to differ.  

 

S.5. The rate-dependence of K and effects of resource growth 

We present K as a rate-dependent parameter that depends on nutrient input (S) and metabolic 

loss (e
-EB/kT

). This general dependency of K on the ratio of nutrient input and metabolic loss has 

been argued previously (Schoener 1973; Savage et al. 2004; O’Connor et al. 2011), and can be 

derived from simple models of resource dynamics when the upper limit of the resource 

population is described as: 
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Equation S10, adapted from Schoener (1973), describes resource growth near K as a function of 

the nutrient supply (S), the per capita uptake rate or fraction of available nutrients accessed (u), 

the conversion of nutrients (c), and loss (or mortality) due to the metabolic rate of the resource 

(d).  At this upper limit, K scales inversely with metabolic rate, giving eqn. 8. It should be noted 

that many forms of resource growth produce dynamics can be represented by eqn. (S10a) as the 



resource experiences negative density dependence (i.e. close to the equilibrium R), even when 

they have different inflection points than the logistic equation (Schoener 1973). In addition, eqn. 

(S10a) can be seen as the ratio of resource growth to loss near equilibrium. An estimate of 

changes in K with temperature (ΔK, eqn. (8)) may thus be possible by measuring short-term 

changes to gross and net production when r does not change. Gross primary production is equal 

to cS and the per biomass metabolic loss rate of the resource is d. This gives a net production 

equal to cS-Rd, and defines K =gross production / (gross – net production) when the resource is 

close to equilibrium.  

The maximum rate of increase (r) also influences resource resource biomass accumulation. In the 

main text we focus on K, and show how changes to the carrying capacity of the resource 

influences BCR. More generally, considering the consumer-resource interaction (Fig. 1), the 

change in total flux in resource biomass accumulation [r (1-R*/K)] with temperature must equal 

the change in flux in both consumption efficiency and consumer loss (ae and m respectively in 

Type 1 functional response). This requirement means that while K must stay constant, r must 

increase at the same rate as the consumer vital rates (Table S1). 

This relationship can be seen graphically by examining the consumer-resource isocline graphs 

(Fig. S1). The effect of r on consumer biomass depends on resource uptake by the consumer 

(r/a). Importantly, the C:R ratio does not change if r(T) ∝ a(T) ∝ m(T), so long as K and e are 

constant (Table S1).  

The effect of r on stability is also different than that of K. In general, r decreases the return time 

of the resource, which dampens ‘overshooting’ by the consumer. This causes r to stabilize 

consumer-resource dynamics across all BCR values. 



Finally, there is considerable debate over the exact form of resource growth (Abrams 2009). The 

logistic growth model that we use derives from simple models where the resource is limited by 

nutrient competition at high densities, but unable to fully utilize resources at low densities 

(Schoener 1973). Other models, such as eqn. S10a but with nutrient uptake described by a Type 

2 functional response (
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  )), generate logistic-type curves but with the maximum 

slope at a different location (i.e., not at K/2), which are often modeled with a more general theta-

logistic model:  
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The qualitative effects of BCR that we present are consistent to the family of curves generated by 

the theta-logistic model, with the theta parameter regulating the rate of change in consumer to 

resource biomass ratio with BCR as well as the rate of change in stability with BCR. 
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Table S1.  Extending the BCR framework to larger food webs and other consumer-resource models. In all cases, BCR is equal to K/R*, where R* is 

the equilibrium abundance of the resource when the consumer is present. 

Model Equilibria with both consumer and 

resource present 

Temperature Independence Criteria† 
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Logistic growth – Type II functional response 
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Logistic growth – Type III functional response 
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Logistic growth with density dependent consumer mortality – Type I functional response 
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Logistic growth in 3-level food chain – Type I functional responses‡ 
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†The conditions necessary for BCR to be independent of changes in temperature. Notations of x(T)=x indicates that the parameter must not vary 

with temperature and the proportionality (∝) symbol indicates that variables can only vary by a scalar. Conditions are provided for both resource 

biomass accumulation parameters (r and K), with a description of the effects of r given in supplementary (S.5). All equations assume that 

conversion efficiency (e) does not vary with temperature. 

‡For the 3-level food chain, the interaction between the predator and resource (BPR) is defined as R*without_top_predator/R*with_top_predator 

 



Figures 

 

Figure S1: Understanding BCR with C-R isoclines. An increases in BCR can result from an increase in 

relative growth (ea/m), which decreases equilibrium of the resource (R*) when the consumer is present 

(R* = 1/relative growth). This shift in BCR causes the C-R equilibrium to move along the resource isocline 

(A). An increase in BCR can also result from an increase in carrying capacity (K), which shifts the C-R 

equilibrium vertically (B). A large difference between the R* with and without the consumer present (i.e. 

m/ea versus K) indicates a large BCR (C), whereas a small difference indicates a weak BCR (D). 

 



 



Figure S2: Reduced nullclines of a 3-level food chain with a resource (R), consumer (C) and a top 

predator. The effect of removing the top predator is shown by following the arrows from the bottom right 

circle to the top left circle in each graph. When the predator has a large effect on the consumer, which in 

turn has a large effect on the resource, the overall effect of removing the top predator is large (large BPR, 

panel A). In the opposite case, where the consumer has only a small effect on the resource, the BPR is 

small, as is seen when removal of the top predator has a small effect (B). Parameters with subscript p are 

for the top predator, with mp/epap giving the equilibrium abundance of the consumer when the top 

predator is present. Consumer and resource parameters do not have subscripts. 


