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Abstract
The	ecological	niche	is	a	multi-dimensional	concept	including	aspects	of	resource	use,	
environmental	tolerance,	and	interspecific	interactions,	and	the	degree	to	which	niches	
overlap	is	central	to	many	ecological	questions.	Plant	phenotypic	traits	are	increasingly	
used	as	surrogates	of	species	niches,	but	we	lack	an	understanding	of	how	key	sampling	
decisions	 affect	 our	 ability	 to	 capture	phenotypic	 differences	 among	 species.	Using	
trait	 data	 of	 ecologically	 distinct	monkeyflower	 (Mimulus)	 congeners,	 we	 employed	
linear	discriminant	analysis	to	determine	how	(1)	dimensionality	(the	number	and	type	
of	 traits)	 and	 (2)	variation	within	 species	 influence	how	well	measured	 traits	 reflect	
phenotypic	differences	among	species.	We	conducted	analyses	using	vegetative	and	
floral	traits	in	different	combinations	of	up	to	13	traits	and	compared	the	performance	
of	commonly	used	functional	traits	such	as	specific	leaf	area	against	other	morphological	
traits.	We	tested	the	importance	of	intraspecific	variation	by	assessing	how	population	
choice	changed	our	ability	to	discriminate	species.	Neither	using	key	functional	traits	
nor	 sampling	 across	 plant	 functions	 and	 organs	 maximized	 species	 discrimination.	
When	 using	 few	 traits,	 vegetative	 traits	 performed	 better	 than	 combinations	 of	
vegetative	and	floral	traits	or	floral	traits	alone.	Overall,	including	more	traits	increased	
our	ability	to	detect	phenotypic	differences	among	species.	Population	choice	and	the	
number	of	traits	used	had	comparable	impacts	on	discriminating	species.	We	addressed	
methodological	 challenges	 that	have	undermined	cross-	study	comparability	of	 trait-	
based	 approaches.	 Our	 results	 emphasize	 the	 importance	 of	 sampling	 among-	
population	 trait	 variation	 and	 suggest	 that	 a	 high-	dimensional	 approach	 may	 best	
capture	phenotypic	variation	among	species	with	distinct	niches.

K E Y W O R D S

intraspecific	variation,	Mimulus	(monkeyflowers),	plant	functional	trait,	sampling	decisions,	
species	similarity

1  | INTRODUCTION

Niche	theory	argues	that	phenotypic	differences	among	species	influ-
ence	interspecific	interactions,	environmental	tolerances,	and	resource	
exploitation	(De	León,	Podos,	Gardezi,	Herrel,	&	Hendry,	2014;	Eklöf	
et	al.,	 2013;	 Givnish,	 1987).	 In	 ecology,	 there	 has	 been	 a	 concep-
tual	 shift	 to	 trait-	based	 approaches	 that	 capture	 these	 phenotypic	

determinants	 of	 the	 niche	 (Cadotte,	 Carscadden,	 &	 Mirotchnick,	
2011;	McGill,	Enquist,	Weiher,	&	Westoby,	2006),	and	this	trait-	based	
approach	 is	 increasingly	 used	 to	 understand	 community	 assembly,	
coexistence,	and	ecosystem	function	 (Díaz	&	Cabido,	2001;	Shipley,	
Vile,	&	Garnier,	2006;	Silvertown,	2004).

Despite	 an	 increased	 interest	 in	 trait-	based	 approaches,	 meth-
odological	 issues	 and	 critical	 assumptions	 may	 limit	 their	 general	
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applicability.	 Although	 the	 number	 (Maire,	 Grenouillet,	 Brosse,	 &	
Villéger,	2015;	Villéger,	Novack-	Gottshall,	&	Mouillot,	2011)	and	iden-
tity	of	traits	used	(Harmon,	Kolbe,	Cheverud,	&	Losos,	2005;	Spasojevic	
&	Suding,	2012)	may	alter	inferences,	a	wide	variety	of	trait-	sampling	
approaches	are	used.	Similarly,	intraspecific	variation	may	be	a	critical	
component	of	ecological	patterns	and	processes	(Bolnick	et	al.,	2011;	
Violle	et	al.,	2012),	but	much	trait-	based	work	has	used	species-	level	
means	or	neglected	trait	among-	population	trait	variation	(Albert	et	al.,	
2010).	Trait-	based	approaches	have	been	advocated	partly	because	of	
the	generality	they	promise	(McGill	et	al.,	2006),	but	we	cannot	realize	
this	potential	of	powerful	comparison	across	studies	and	systems	until	
we	assess	the	consequences	of	different	sampling	strategies.

The	term	“trait”	 is	variously	defined.	Here,	a	 trait	 is	any	measur-
able	 morphological,	 behavioral,	 phenological,	 physiological,	 or	 bio-
chemical	phenotypic	character.	Although	any	of	these	traits	may	influ-
ence	organismal	fitness	in	certain	environments,	only	traits	that	have	
been	empirically	or	observationally	 linked	 to	fitness	or	performance	
are	termed	“functional	traits”	(e.g.,	McGill	et	al.,	2006).	As	part	of	our	
study,	we	 examined	phenotypic	variation	within	 a	 species	 pool	 and	
evaluated	whether	species	were	better	differentiated	by	known	func-
tional	 traits	or	other	phenotypic	 characters.	We	contend	 that	many	
understudied	 traits	 showing	variation	among	closely	 related	 species	
are	likely	functional	in	particular	biotic	or	abiotic	settings	and	merely	
lack	experimentation.	As	is	common	in	trait-	based	studies	(Cornelissen	
et	al.,	2003),	we	used	primarily	morphological	 traits	and	“soft”	 func-
tional	 traits	 (e.g.,	plant	height),	more	easily	measurable	correlates	of	
the	functional	trait	of	interest	(“hard”	traits,	e.g.,	competitive	ability),	
and	although	soft	and	hard	traits	may	be	correlated	at	global	scales	
(e.g.,	Díaz	et	al.,	2004),	trait	relationships	may	vary	among	systems	and	
environments	(Funk	&	Cornwell,	2013).	Therefore,	we	focus	strictly	on	
capturing	phenotypic	differences	among	species	and	emphasize	that	
resolving	tripartite	trait–environment–fitness	relationships	for	a	wide	
range	of	phenotypic	characters	(i.e.,	mapping	traits	to	niches)	remains	
a	key	area	for	development.

Trait-	based	studies	often	use	one	 to	20	 traits	and	usually	 rely	
on	 one	 of	 two	 distinct	 approaches	 to	 quantifying	 traits:	 “repre-
sentative	 trait”	 or	 “high-	dimensional”	 approaches.	 The	 represen-
tative	trait	approach	posits	that	one	or	few	ecologically	 important	
traits	determine	species’	success	 in	an	abiotic	or	biotic	milieu.	For	
example,	a	single	trait,	plant	biomass,	can	explain	over	60%	of	vari-
ation	 in	 competitive	 ability	 among	wetland	 plant	 species	 (Gaudet	
&	 Keddy,	 1988).	 Numerous	 studies	 have	 focused	 on	 single	 func-
tional	 traits,	 such	 as	 plant	 height	 or	 specific	 leaf	 area	 (SLA),	 to	
understand	 competitive	 differences	 or	 patterns	 of	 species	 distri-
bution	(Falster	&	Westoby,	2003;	Grime,	1973;	Sides	et	al.,	2014).	
These	low-	dimensional	studies	use	“representative	traits”	relevant	
to	plant-	strategy	 theories.	 For	 example,	 the	 leaf	 economics	 spec-
trum	 predicts	 that	 leaf	 traits	 shaping	 photosynthetic	 investment	
and	 return	 determine	 the	 distribution	 of	 broad	 vegetative	 forms	
across	 climatic	 gradients	 (Wright	 et	al.,	 2004).	 Similarly,	 the	 leaf–
height–seed	scheme	posits	 that	combinations	of	SLA,	height,	 and	
seed	mass	characterize	species’	colonization	abilities	and	responses	
to	disturbance	(Westoby,	1998).

These	plant-	strategy	 traits	 are	predominantly	 invoked	 in	diverse	
assemblages	but	may	also	vary	among	close	relatives	and	intraspecif-
ically	 across	 environments.	 In	 co-	occurring	willow	 (Salix)	 congeners,	
among-	species	variation	in	several	hydrological	functional	traits	cor-
related	with	differences	in	habitat	affinities	(species’	weighted	average	
distance	to	the	water	table);	for	example,	congeners	from	wetter	hab-
itats	showed	higher	root	growth	rates	and	turgor	loss	points	(Savage	
&	 Cavender-	Bares,	 2012).	 Similarly,	 Matzek	 (2011)	 investigated	 18	
resource-	capture	traits	in	pine	(Pinus)	species	and	found	that	a	single	
trait,	photosynthetic	nitrogen-	use	efficiency,	best	explained	the	more	
rapid	growth	of	invasive	compared	to	noninvasive	pines.	Within	spe-
cies	of	European	forest	herbs	(Anemone nemorosa	and	Milium effusum),	
plant	height	was	greater	in	northerly	populations,	suggesting	that	the	
high-	latitude	populations	may	be	more	competitive	(De	Frenne	et	al.,	
2011).

One	type	of	representative	trait	approach	(exemplified	by	the	leaf–
height–seed	 scheme)	 entails	 sampling	 across	 “distinct”	 trait	 groups,	
as	not	all	traits	are	equally	informative.	As	traits	are	correlated,	mea-
surement	of	 certain	 traits	 should	be	 redundant,	yielding	diminishing	
returns	 as	 trait	 dimensionality	 increases	 (Laughlin,	 2014).	 Ecologists	
have	 long	 grouped	 traits	 by	 expected	 similarity	 and	 function	 (e.g.,	
Raunkiaer,	1934),	and	sampling	across	distinct	phenotypic	axes	may	
allow	us	to	measure	fewer	traits	with	little	loss	of	phenotypic	informa-
tion;	however,	this	intuitive	sampling	solution	requires	a	rigorous	test	
to	demonstrate	its	broader	utility.

Representative	trait	approaches	are	valued	for	their	mechanistic	
link	between	environment	and	species	performance	(Lepš,	de	Bello,	
Lavorel,	 &	 Berman,	 2006;	Wright	 et	al.,	 2004).	 They	may	 be	most	
appropriate	when	 predicting	 species’	 success	 along	 a	 few	 specific	
niche	axes	or	across	large	biogeographic	gradients.	Nonetheless,	how	
well	 these	approaches	capture	phenotypic	variation	at	finer	spatial	
scales	 is	 poorly	 understood,	 and	often	 the	 “most	 important”	 niche	
axis	 is	unknown	 (Fridley,	Vandermast,	Kuppinger,	Manthey,	&	Peet,	
2007).

In	 contrast,	 many	 ecological	 questions	 may	 require	 a	 high-	
dimensional	trait-	sampling	approach.	To	predict	whether	one	species	
might	pollinate	another,	for	example,	we	need	to	consider	plant	and	
pollinator	 phenological,	 morphological,	 and	 behavioral	 traits	 (e.g.,	
Eklöf	et	al.,	2013).	Investigations	of	community	assembly	mechanisms	
(limiting	 similarity	 and	 habitat	 filtering)	 are	 also	 best	 addressed	 by	
examining	species	in	multivariate	space	(Cornwell,	Schwilk,	&	Ackerly,	
2006)	 as	multiple	 phenotypic	 traits	 shape	 an	organism’s	 interaction	
with	its	competitors	and	environment.	Therefore,	a	high-	dimensional	
approach	 should	 better	 approximate	 the	 “n-	dimensional”	 ways	 in	
which	 species	 differ	 (Cornelissen	 et	al.,	 2003;	 Pérez-	Harguindeguy	
et	al.,	2013).	Using	simulations,	Maire	et	al.	(2015)	demonstrated	that	
measuring	 more	 traits	 may	 better	 represent	 a	 community’s	 pheno-
typic	variation:	 functional	 diversity	 calculated	 from	10	 traits	 (rather	
than	five)	more	closely	approximated	the	“true”	community	functional	
diversity.	But	measuring	numerous	traits	on	many	individuals	and	pop-
ulations	quickly	becomes	unfeasible,	and	research	has	just	begun	eval-
uating	how	trait-	sampling	decisions	impact	estimates	and	applications	
of	trait	data	(de	Bello	et	al.,	2011).
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Here,	 we	 use	 an	 observational	 dataset	 of	 ecologically	 distinct	
species	to	explicitly	compare	how	trait	dimensionality	and	population	
sampling	influence	estimates	of	species’	phenotypic	dissimilarity.	We	
assess	how	well	the	traits	we	measure	can	recover	phenotypic	differ-
ences	 among	 species,	 using	 vegetative	 and	 floral	 traits	 in	 different	
combinations	of	up	to	13	traits.	As	we	aim	to	provide	a	practical	sam-
pling	guide,	we	tease	apart	 two	key	elements	of	dimensionality:	 the	
number	of	traits	sampled	and	the	types	of	traits	included.	Specifically,	
we	 evaluate	 the	hypotheses	 that	 (1)	 using	more	 traits,	 (2)	 including	
both	vegetative	and	floral	traits,	and	(3)	sampling	across	trait	groups	
(e.g.,	leaf	traits,	growth	form	traits)	will	best	capture	interspecific	phe-
notypic	 differences.	 Lastly,	 we	 test	 the	 importance	 of	 intraspecific	
variation	 by	 assessing	 how	 population	 choice	 changes	 our	 under-
standing	of	phenotypic	differences	among	species.

2  | MATERIALS AND METHODS

2.1 | Study system and field collections

In	 western	 North	 America,	 the	monkeyflower	 genus	Mimulus sensu 
lato	 consists	 of	 approximately	 120	 species,	 most	 occurring	 within	
California.	 The	 genus	 includes	 phenotypically	 distinct	 forms,	 and	
	several	 monkeyflower	 species	 span	 a	 considerable	 geographic	 and	
environmental	range	(Sheth,	Jiménez,	&	Angert,	2014)	and	are	charac-
terized	by	a	series	of	ecomorphs	(Wu	et	al.,	2008).	The	seven	species	
sampled	here	(Mimulus guttatus, M. leptaleus,	M. lewisii,	M. mephiticus, 
M. moschatus,	M. primuloides,	and	M. tilingii)	are	ecologically	and	pheno-
typically	distinct	(Table	1).	Although	their	phenology	and	persistence	
are	tightly	linked	to	water	availability	(Hall	&	Willis,	2006;	Williams	&	
Levine,	2004),	these	species	diverge	in	elevational	range,	microhabitat	
preference,	and	vegetative	phenotype	(Table	1).	Furthermore,	Mimulus 
species	differ	in	pollination	syndrome,	and	the	sampled	species	include	
outcrossers	and	putative	selfing	species	(Table	1).

To	 clarify	how	 trait	 dimensionality	 impacts	measurable	 interspe-
cific	 phenotypic	 differences	 along	 abiotic	 and	 biotic	 niche	 axes,	we	
measured	 eight	 vegetative	 and	 six	 floral	 traits	 (Table	2)	 in	 popula-
tions	of	the	seven	focal	monkeyflower	species	in	summer	2012.	We	
selected	vegetative	traits	related	to	competitive	ability,	water	usage,	
and	photosynthetic	capacity,	and	floral	traits	related	to	structural	dif-
ferences	among	species	and	pollen-	transfer	syndromes.

To	include	trait	variation	across	environments,	we	sampled	across	
a	 1,866-	m	 elevation	 gradient	 in	 the	 Sierra	 Nevada	 Mountains	 of	
California,	 in	Yosemite	National	Park	 and	neighboring	 Inyo	National	
Forest.	 Site	 selection	 was	 opportunistic,	 based	 on	 range	 maps,	
previous	 occurrence	 records,	 and	 local	 habitat	 descriptions.	 One	
	species,	M. primuloides,	was	more	heavily	sampled	to	capture	among-	
population	 variation	 across	 elevation	 and	 habitats,	 and	 populations	
spanned	 soggy	 high-	elevation	meadows,	 river-	adjacent	 populations,	
forest	gaps,	and	dry,	disturbed	trailsides	and	ditches.	At	a	given	site,	we	
placed	transects	haphazardly	to	bisect	a	population	along	 its	 length,	
and	samples	of	flowering	 individuals	were	stratified	across	the	tran-
sect.	Individuals	missing	data	for	multiple	traits	were	removed	before	
analysis,	and	populations	with	fewer	than	nine	individuals	remaining	

were	discarded	(this	threshold	discussed	below).	This	left	seven	popu-
lations	of	M. primuloides,	in	addition	to	two	M. moschatus	populations,	
and	one	population	of	each	of	the	five	remaining	species.	Leaf	counts	
for	the	M. tilingii	population	are	approximate.	Herkogamy	for	several	
individuals	 in	 the	M. leptaleus	 population	was	estimated	 to	be	 zero;	
their	miniscule	flowers	prevented	nondestructive	sampling	of	this	trait	
in	certain	individuals,	but	herkogamy	and	floral	size	are	often	tightly	
linked	(Sicard	&	Lenhard,	2011).	The	cleaned	dataset	had	trait	data	for	
9–18	individuals	per	population.

2.2 | Statistical analysis

To	determine	whether	 the	 sampled	 traits	 could	 adequately	 capture	
phenotypic	 differences	 among	 species,	 we	 used	 linear	 discriminant	
analysis	(LDA;	Fisher,	1936;	Venables	&	Ripley,	2002).	LDA	identifies	
linear	combinations	of	variables	that	best	model	the	phenotypic	differ-
ences	among	species.	With	our	data,	it	characterized	the	phenotype	
of	 each	 species	 and	 assigned	 individuals	 to	 species	 based	on	 these	
discriminant	“rules.”	From	this	analysis,	we	assessed	how	the	propor-
tion	of	individuals	correctly	assigned	to	species	varied	with	trait	data-
set,	dimensionality,	and	combination.	This	approach	also	allowed	us	to	
determine	the	proportion	of	incorrect	assignments	–	the	species-	level	
information	lost	using	different	sampling	approaches.

Prior	to	analysis,	continuous	traits	(all	but	internode;	Table	2)	were	
z-	score-	transformed	(e.g.,	Cornwell	et	al.,	2006).	We	then	created	100	
balanced	 datasets,	 each	 time	 by	 randomly	 selecting	 a	 single	 popu-
lation	per	each	of	the	seven	species,	 including	nine	 individuals	from	
each	chosen	population.	LDA	faces	a	mathematical	“small	sample	size”	
problem	as	 the	number	of	 traits	approaches	 the	number	of	samples	
(e.g.,	Sharma	&	Paliwal,	2015);	hence,	our	sample	size	threshold	of	nine	
individuals	per	population	was	selected	to	maximize	our	sample	size	
without	excluding	too	many	of	our	less	highly	sampled	populations.

Within	each	balanced	dataset,	we	sequentially	chose	a	trait	dataset	
(vegetative,	 floral,	 combined,	 or	 combined	 constrained	 as	 described	
below),	the	number	of	traits	to	include,	and	the	exact	combination	of	
traits	 included,	producing	a	 reduced	dataset	 for	analysis	 (Fig.	S1	 for	
flowchart).	Analyses	were	carried	out	iteratively:	for	each	of	the	100	
balanced	datasets,	we	ran	through	all	permutations	of	 trait	datasets	
and	numbers	of	traits,	randomly	sampling	up	to	100	different	trait	com-
binations	per	number	of	 traits.	This	amounted	to	1,021	unique	 trait	
combinations	for	each	of	the	balanced	datasets.	For	each	trait	com-
bination,	we	 calculated	Gower’s	 distance	 (Gower,	 1971)	 using	daisy 
within	 R	 package	 cluster	 (https://cran.r-project.org/web/packages/
cluster/index.html)	 and	 used	 this	 distance	matrix	 for	 all	 subsequent	
analyses.	Gower’s	distance	is	commonly	used	in	trait-	based	ecological	
work	because	it	accommodates	different	data	types	(e.g.,	binary,	con-
tinuous)	and	permits	missing	values	by	ascribing	them	no	weight	in	the	
distance	calculation	(e.g.,	Maire	et	al.,	2015;	Villéger	et	al.,	2011).	All	
analyses	were	conducted	 in	R	 (version	3.1.2,	https://www.R-project.
org),	and	trait	data	and	code	are	included	in	the	supplement.

In	 a	 common	 solution	 to	 sample-	size-	based	 mathematical	 con-
straints	 of	 LDA	 (few	 individuals,	 many	 traits),	 we	 first	 used	 prin-
cipal	 coordinates	 analysis	 (PCoA)	 on	 the	 Gower’s	 distance	 matrix	

https://cran.r-project.org/web/packages/cluster/index.html
https://cran.r-project.org/web/packages/cluster/index.html
https://www.R-project.org
https://www.R-project.org
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constructed	from	each	selected	combination	of	traits	as	a	preprocess-
ing	 step	 (Baker	&	 Logue,	 2003;	 Fukunaga,	 1990;	 Sharma	&	 Paliwal,	
2015)	and	passed	the	first	two	major	axes	as	input	“traits”	to	the	LDA.	
These	first	 two	axes	should	capture	 the	vast	majority	of	phenotypic	

variation:	 in	ordinations	of	 the	 full	 dataset,	 the	first	 two	PCoA	axes	
in	 combination	 explained	 86.8%	 of	 variation	 using	 vegetative	 traits	
(Figure	1),	 and	 84.3%	using	 floral	 traits	 (Figure	2).	To	 further	 ensure	
that	only	using	the	first	two	PCoA	axes	from	this	preprocessing	step	

TABLE  1 Focal	Mimulus	species:	Californian	geographic	range,	elevation	range,	general	habitat	affinities,	and	phenotypic	descriptions
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did	not	drive	 the	 results,	we	conducted	 smaller	 (3	 species	with	12+	
individuals	each)	parallel	analyses	using	two	and	eight	PCoA	axes	in	the	
LDA	(details	in	SI).	With	the	exception	of	the	floral-	only	dataset	for	M. 
lewisii	and	M. primuloides	population	7	(which	showed	greater	assign-
ment	success	with	eight	PCoA	axes),	the	results	were	qualitatively	very	
similar	using	two	and	eight	PCoA	axes	(Figs.	S2	and	S3).	Therefore,	we	
report	results	from	the	larger	dataset,	using	two	PCoA	axes.	In	previous	
work,	“dimensionality”	refers	to	the	number	of	composite	orthogonal	
phenotypic	axes	used	 (Maire	et	al.,	2015;	Villéger	et	al.,	2011);	 thus,	
dimensionality	encapsulates	both	the	number	and	type	of	traits	used	
to	estimate	phenotypic	space.	Our	definition	of	dimensionality	follows	
this	concept	but	differs	operationally.	We	vary	the	number	and	type	of	
input	traits,	but	as	outlined	above,	our	reported	results	are	all	gener-
ated	using	the	same	number	of	composite	orthogonal	trait	axes	(two).

To	explore	the	impact	of	different	ways	of	incorporating	floral	and	
vegetative	trait	data,	we	used	four	separate	trait	grouping	approaches:	
vegetative	traits	only,	floral	traits	only,	combined	traits,	and	combined	
constrained	traits	(explained	below).	In	the	combined	traits	approach,	
selected	 traits	were	 input	 into	a	 single	PCoA	 to	generate	 two	com-
posite	“trait”	axes	for	the	subsequent	LDA.	This	could	mean	that	each	
axis	 contained	vegetative	and	floral	 information,	but	 it	 also	allowed	
the	more	variable	 trait	 type	 to	dominate.	 In	 contrast,	 the	combined	
constrained	traits	approach	used	separate	PCoAs	such	that	one	axis	
subsequently	input	into	the	LDA	was	constrained	to	be	solely	vegeta-
tive	and	the	other	solely	floral.

We	assessed	whether	high-	dimensional	approaches	provided	addi-
tional	phenotypic	information	by	determining	whether	the	proportion	
of	 individuals	 correctly	 assigned	 to	 species	 increased	with	 the	 num-
ber	of	traits	 included.	We	evaluated	the	representative	trait-	sampling	
approach	in	three	ways.	First,	we	performed	LDA	using	single	traits	to	
determine	whether	 species	were	better	discriminated	by	 single	 func-
tional	 traits	or	other	morphological	 traits	 (using	only	 traits	with	com-
plete	field	data	 and	which	were	variable	within	 subsampled	 species).	
Second,	we	grouped	the	14	measured	traits	a	priori	into	“logical”	clus-
ters	thought	to	represent	different	aspects	of	plant	function	and	life	his-
tory.	Vegetative	traits	were	divided	into	plant	size,	leaf,	and	growth	form	
traits,	and	floral	traits	comprised	plant	structure	and	investment	strat-
egies,	floral	size,	and	pollen	transfer	traits	(Table	2).	We	predicted	that	
trait	combinations	incorporating	more	of	these	trait	groups	would	cap-
ture	more	unique	phenotypic	information.	Third,	to	determine	whether	
less	 strongly	 correlated	 traits	 would	 better	 differentiate	 species,	 we	
calculated	the	average	absolute	pairwise	correlation	within	each	vege-
tative	or	floral	trait	combination	(using	all	individuals,	populations,	and	
species)	and	evaluated	 its	average	assignment	success.	We	represent	
the	impact	of	sampling	decisions	on	correct	assignment	as	odds	ratios.

Logistically,	an	ideal	sampling	strategy	entails	measuring	the	few-
est	traits	with	minimal	 information	loss.	Therefore,	we	identified	the	
best	and	worst	four-	trait	combinations	(falling	within	the	fourth	or	first	
quartiles,	 respectively,	 of	 assignment	 success	 across	 all	 numbers	 of	
traits	included).	Vegetative	and	floral	datasets	were	treated	separately.

Trait dataset Trait group Traits Measurement method

Vegetative Size Plant	height To	top	of	vegetation

Leaf	number Counted	all	leaves

Leaf Specific	leaf	area	
(SLA)

Fresh	leaf	area/dry	
massa

Leaf	perimeter Sum	of	all	marginsa

Leaf	aspect	ratio Leaf	length/widtha

Leaf	circularity Measure	of	roundnessa

Growth	form Internode Observed	rosette	or	not

Stem	width Width	at	basal	leaf	pair

Floral Structure/investment Flower	number Counted	or	estimated	
all

Bud	number Counted	all	buds

Pod	number Counted	or	estimated	
all

Floral	size Corolla	length Tube	length,	from	
where	corolla	joins	
peduncle	to	beginning	
of	corolla	lobes

Corolla	width Tube	width,	at	widest	
point	below	corolla	
lobes

Pollen	transfer Herkogamy Stigma–anther	
separation

aArea	and	leaf	traits	measured	on	2–4	leaves	per	individual,	in	ImageJ	(Schneider,	Rasband,	&	Eliceiri,	
2012).
Circularity	=	4π(area/perimeter2).

TABLE  2 Measurement	and	grouping	of	
vegetative	and	floral	traits:	Traits	were	
grouped	a	priori	by	expected	similarity	and	
function
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3  | RESULTS

3.1 | Trait dimensionality

No	 single	 trait	 performed	 best	 for	 all	 species	 (Figure	3).	 Single	
	functional	 traits,	 such	as	SLA	and	height,	did	not	capture	any	more	
among-	species	variation	than	did	other	morphological	traits.	Instead,	
different	species	were	better	distinguished	by	different	traits	(Fig.	S4).	
For	example,	correct	assignment	of	individuals	to	species	using	only	
SLA	 averaged	 approximately	 75%	 for	M. moschatus	 but	was	 below	
25%	for	several	other	species	including	M. guttatus	(Fig.	S4).	Although	
not	distinctive	in	several	leaf	traits	(e.g.,	SLA,	circularity),	M. guttatus 
was	best	distinguished	using	leaf	aspect	ratios.	Generally,	M. leptaleus 
individuals	were	well	discriminated	using	corolla	width	but	not	plant	
height.	These	findings	suggest	that	to	capture	interspecific	phenotypic	
differences,	we	need	to	measure	multiple	traits.	Further,	the	identity	
of	these	traits	may	vary	among	assemblages.

All	multidimensional	approaches	outperformed	the	average	single	
trait	 (41%	correct	assignment;	Figure	3),	 and	overall,	 including	more	
traits	 increased	correct	assignment.	On	average,	the	odds	of	correct	
assignment	 increased	 about	 twofold	 over	 the	 range	 of	 numbers	 of	
traits	investigated,	as	the	proportion	of	correct	assignment	rose	from	
0.644	using	four	traits	to	0.788	using	13	(Figure	4).	Using	few	traits,	
combinations	 of	 vegetative	 traits	 most	 easily	 discriminated	 species	
(Figure	4).	Within	both	vegetative	and	floral	trait	datasets,	traits	varied	
from	virtually	orthogonal	 to	strongly	correlated	 (absolute	values	of	r 
.00–.87;	Table	S1),	making	it	unlikely	that	differences	in	trait	correla-
tions	drove	the	different	performances	of	multidimensional	vegetative	
and	floral	trait	combinations.	Counter	to	our	prediction	that	drawing	
across	floral	and	vegetative	trait	axes	would	be	most	informative,	when	
few	traits	were	used,	both	combined	trait	datasets	performed	below	
even	 an	 average	 of	 the	 independent	 vegetative	 and	 floral	 success	
(Figure	4).	Using	six	traits,	for	example,	the	odds	of	correct	assignment	
using	vegetative	traits	were	1.4-	fold	greater	than	with	the	combined	

F I G U R E  1 Phenotypic	overlap	of	
species	in	multivariate	vegetative	trait	
space.	The	principal	coordinates	analysis	
(PCoA)	used	Gower’s	distance	on	the	full	
dataset	(all	populations	and	individuals)	and	
all	standardized	vegetative	traits

F IGURE  2 Phenotypic	overlap	of	
species	in	multivariate	floral	trait	space.	
The	principal	coordinates	analysis	(PCoA)	
used	Gower’s	distance	on	the	full	dataset	
(all	populations	and	individuals)	and	all	
standardized	floral	traits
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constrained	dataset.	When	more	traits	were	used,	the	combined	trait	
dataset	yielded	the	greatest	correct	assignment	of	individuals	to	spe-
cies	(81.5%	at	13	traits).	However,	the	correct	assignment	rate	using	
eight	vegetative	traits	was	similar	(77.8%)	and	performed	as	well	as	10	
traits	from	the	combined	trait	dataset.	The	odds	of	correct	assignment	
using	eight	vegetative	traits	were	1.1	times	better	than	using	even	the	
full	combined	constrained	dataset	(13	traits).

As	expected,	certain	 trait	 combinations	captured	more	 interspe-
cific	phenotypic	differences.	Many	low-	dimension	trait	combinations	
performed	 as	well	 as,	 or	 better	 than,	 several	 higher-	dimension	 trait	
combinations.	Among	combinations	of	four	traits,	the	odds	of	correct	
assignment	using	the	best-	performing	trait	combination	were	greater	
than	 the	 least	 informative	 combination	 by	 2.8-		 to	 4.1-	fold,	 using	
vegetative	 and	 floral	 traits,	 respectively	 (Figure	5).	 Plant	 height	 and	
leaf	aspect	ratio	featured	in	all	eight	of	the	best	four-	trait	vegetative	
combinations	(Table	2	for	traits).	SLA	appeared	in	22	of	the	31	worst	
(bottom	 quartile)	 four-	trait	 vegetative	 combinations.	 Leaf	 number,	
internode	(rosette	or	not),	and	leaf	perimeter	and	circularity	were	also	
common	 in	poorly-	performing	combinations.	The	best	 four-	trait	flo-
ral	combinations	consistently	contained	corolla	width,	corolla	 length	
and	herkogamy,	 in	addition	to	a	floral	 investment	trait	 (e.g.,	number	
of	flowers).	 In	contrast,	 the	 least	 informative	 four-	trait	floral	combi-
nations	contained	all	three	structural/investment	traits,	coupled	with	
herkogamy	or	 a	measure	 of	 corolla	 size.	These	 best	 and	worst	 trait	

F I G U R E  3 Correct	assignment	of	individuals	to	species	using	
single	traits.	No	single	trait	performed	best	for	all	species,	and	
“functional”	traits	such	as	SLA	and	height	(white	boxplots)	were	not	
noticeably	better	than	morphological	traits	such	as	leaf	aspect	ratio.	
Only	traits	for	which	complete	field	data	were	available	and	which	
were	variable	within	subsampled	species	were	used	in	this	analysis.	
Boxplots	summarize	data	from	all	100	runs

F I G U R E  4 Correct	assignment	of	individuals	to	species	versus	
number	of	traits.	Correct	assignment	of	individuals	to	species	
increased	on	average	as	more	traits	were	considered	and	varied	
with	trait	dataset	used.	Vegetative	traits	outperformed	floral	or	
combined	datasets	at	comparable	numbers	of	traits.	The	combined	
constrained	trait	dataset	used	separate	principal	coordinates	analyses	
in	linear	discriminant	analysis	(LDA)	preprocessing	such	that	one	
axis	subsequently	input	into	the	LDA	was	constrained	to	be	solely	
vegetative,	and	the	other	floral.	SE	bars	are	shown

F I G U R E  5 Correct	assignment	versus	number	of	traits,	by	trait	
groups.	The	relationship	between	correct	assignment	to	species	and	
number	of	traits,	broken	down	by	the	number	of	trait	groups	(see	
Table 2)	incorporated	in	trait	combinations,	for	(a)	vegetative	and	(b)	
floral	trait	datasets.	Dots	indicate	average	correct	assignment	for	
each	trait	combination	and	are	jittered	to	reduce	overlap.	Particularly	
for	vegetative	traits,	sampling	across	trait	groups	did	not	substantially	
increase	measurable	species	differences

(a)

(b)
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combinations	were	not	predictable	beforehand:	sampling	traits	strate-
gically	across	a	greater	number	of	“logical	trait	groups”	(e.g.,	leaf	traits,	
growth	form	traits;	Table	2)	thought	a	priori	to	capture	unique	pheno-
typic	axes	did	not	increase	correct	assignment	(Figure	5).

Nonetheless,	combinations	of	 less	correlated	traits	were	more	
informative.	A	decrease	 in	 the	average	absolute	pairwise	correla-
tion	within	 trait	combinations	 from	0.5	 to	0.2	 improved	the	odds	
of	 correct	 assignment	 1.3-		 to	 2.1-	fold	 using	 vegetative	 or	 floral	
traits,	respectively	(Figure	6).	Although	these	trait	datasets	appear	
to	show	different	trends	and	point	spreads	(Figure	6),	we	attribute	
this	 primarily	 to	 the	 larger	 number	 of	 vegetative	 combinations,	
spanning	a	wider	 range	of	numbers	of	 traits	 included	and	assign-
ment	success.

Both	the	average	assignment	success	and	its	relationship	with	the	
number	of	 traits	 included	varied	among	 species.	For	example,	using	
four	vegetative	traits,	the	average	correct	assignment	was	80.9%	for	
M. lewisii	but	only	46.2%	for	M. mephiticus	(Figure	7a).	Correct	assign-
ment	also	varied	with	trait	dataset	(panels	 in	Figure	7a);	as	a	case	in	
point,	M. lewisii	was	much	better	distinguished	using	vegetative	rather	
than	 floral	 traits	 (80.9%	 vs.	 53.8%	 success,	 respectively).	 For	 most	
species,	correct	assignment	showed	either	a	slight	and	plateauing	or	
strong	 positive	 relationship	with	 the	 number	 of	 traits,	 using	 either	
combined	trait	dataset	(Figure	7a).	However,	using	more	traits	did	not	
improve	correct	assignment	for	two	of	seven	species	when	a	subset	of	
traits	was	used	(vegetative	or	floral),	and	the	identity	of	these	species	

differed	 depending	 on	 the	 subset	 used	 (Figure	7a).	 These	 dissimilar	
patterns	in	LDA	assignment,	among	species	and	among	trait	datasets,	
are	 understood	 by	 examining	 phenotypic	 overlap	 among	 species	 in	
multivariate	trait	space.	Species	overlapping	heavily	in	either	vegeta-
tive	(Figure	1)	or	floral	(Figure	2)	trait	space	were	poorly	discriminated	
using	that	trait	dataset,	even	when	numerous	traits	were	considered	
(Figure	7a).	 Therefore,	 in	 speciose	 assemblages,	 multiple	 suites	 of	
traits	would	best	capture	species’	phenotypic	differences.

3.2 | Population choice

The	effects	of	varying	the	number	of	traits	included	were	qualitatively	
similar	for	populations	of	M. primuloides	as	they	were	for	the	Mimulus 
species	discussed	above;	however,	correct	assignment	increased	with	
additional	floral	traits	for	all	M. primuloides	populations	(Figure	7b).

Populations	 differed	 in	 their	 phenotypic	 similarity	 with	 other	
Mimulus	 species	 (Figure	7b),	 as	 further	 evidenced	 by	 the	 spe-
cies	 to	which	 populations	were	most	 often	misassigned	 (Fig.	 S5b).	
Population	4	was	phenotypically	distinctive,	while	when	many	traits	
were	included,	population	3	was	most	alike	M. mephiticus,	and	pop-
ulation	 2	was	most	 alike	M. tilingii.	 Population	 5	 of	M. primuloides 
was	misassigned	to	M. tilingii	about	10%	of	the	time	using	four	traits,	
but	hardly	ever	using	eight	traits	 (Fig.	S5b),	stressing	the	combined	
influence	 of	 trait	 dimensionality	 and	 population	 choice	 on	 species	
discrimination.

Population	choice	had	a	large	effect	on	the	odds	of	correctly	dis-
criminating	species,	particularly	when	vegetative	traits	were	included.	
Within	 combinations	 of	 four	 vegetative	 traits,	 sampling	 the	 most	
distinct	M. primuloides	 population	 (compared	 to	 the	 least	 distinct)	
increased	the	odds	 ratio	by	9.6	times	 (Figure	7b),	whereas	 the	odds	
ratio	 increased	 just	 under	 fivefold	 between	 the	 least	 and	most	 dis-
tinct	 species	 (M. mephiticus	 and	M. lewisii,	 respectively;	 Figure	7a).	
Population	choice	also	had	a	large	impact	on	correct	assignment	com-
pared	to	the	effect	of	increasing	the	number	of	traits	included:	using	
the	 combined	 trait	 dataset,	 increasing	 the	 number	 of	 traits	 from	 4	
to	13	resulted	 in	a	2.4-	fold	boost	 in	the	odds	of	correct	assignment	
(Figure	4).

4  | DISCUSSION

Our	 results	 demonstrate	 that	 trait	 and	 population	 sampling	 deci-
sions	have	important	impacts	on	our	ability	to	estimate	phenotypic	
differences	 among	 species.	 Using	 ecologically	 distinct	 congeners,	
we	showed	that	high-	dimensional	 trait	sampling	estimates	pheno-
typic	 differences	 among	 species	 better	 than	 representative	 traits	
chosen	a	priori.	Moreover,	our	results	show	that	the	trait	combina-
tions	that	distinguish	species	may	change	not	only	as	different	spe-
cies	are	considered,	but	also	as	different	populations	within	species	
are	included	in	an	analysis.	These	findings	have	important	implica-
tions	 for	 the	way	 that	 trait	 sampling	 is	 conducted	 and	 compared	
across	studies	and	for	how	phenotypic	differences	among	species	
are	interpreted.

F I G U R E  6 Correct	assignment	versus	trait	correlation.	Correct	
assignment	of	individuals	to	species	as	a	function	of	the	average	
absolute	pairwise	correlation	between	traits	in	a	trait	combination,	
for	floral	and	vegetative	trait	datasets.	Points	are	sized	by	the	number	
of	traits	in	a	combination	(larger	points	are	combinations	with	more	
traits).	Correct	assignment	decreased	as	traits	within	a	combination	
became	more	highly	correlated,	using	floral	(y =	−0.56x	+	0.84)	and	
vegetative	(y	=	−0.16x +	0.75)	trait	datasets
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4.1 | Trait dimensionality

Trait	dimensionality	is	increasingly	recognized	as	an	important	issue	in	
ecology	and	evolutionary	biology.	It	can	alter	which	mechanisms	we	
believe	are	driving	patterns	of	functional	diversity	(Maire	et	al.,	2015),	
clarify	why	we	detect	 local	adaptation	 in	some	studies	but	not	oth-
ers	(MacPherson,	Hohenlohe,	&	Nuismer,	2015),	and	as	demonstrated	
here,	shape	our	perception	of	phenotypic	differences	among	species.

The	 utility	 of	 a	 representative	 trait	 approach	 has	 been	 shown	
by	 studies	 comparing	 different	 trophic	 levels	 or	 growth	 forms	 and	
	looking	 across	 diverse	 communities	 and	 environments,	 often	 at	 a	
	biogeographic	 scale.	Examining	 the	number	of	 traits	needed	 to	pre-
dict	species	 interactions	 in	different	ecological	networks,	Eklöf	et	al.	
(2013)	 analyzed	 studies	 using	 6–21	 traits	 and	 reported	 that	 little	
improvement	was	 seen	 beyond	 three	 traits.	 In	 these	 studies,	 11%–
100%	of	network	structure	was	predictable	using	even	a	single	trait,	
although	the	identity	of	this	key	trait	varied	among	networks.	Similarly,	
plant	height	 is	a	compelling	representative	trait	of	plant	competitive	
ability,	 particularly	 when	 trying	 to	 capture	 competitive	 differences	
among	very	different	growth	forms	and	along	a	single	resource	axis:	
light	(Falster	&	Westoby,	2003).	Lastly,	leaf	economics	spectrum	traits	
have	successfully	predicted	growth	and	survival	of	diverse	plant	types	
(Poorter	&	Bongers,	2006)	and	explained	variation	in	litter	decompo-
sition	across	biomes	(Cornwell	et	al.,	2008;	but	see	Jackson,	Peltzer,	&	
Wardle,	2013	who	demonstrated	that	within-	species	variation	in	leaf	
economics	spectrum	traits	did	not	explain	litter	decomposition).

Our	study	found	no	evidence	that	species	differed	more	in	“func-
tional”	traits	(potentially	relating	to	resource	acquisition,	competitive	
interactions,	or	plant–pollinator	dynamics)	than	they	did	in	other	mor-
phological	traits	(Figure	3).	Although	it	has	been	argued	that	only	traits	
with	 clear	 ecological	 function	 should	 be	 incorporated	 in	 ecological	
studies	(e.g.,	Lepš	et	al.,	2006),	other	traits	may	be	equally	important	
for	 several	 reasons:	 the	 definition	 of	 “functional	 trait”	 can	 be	 very	
broad	and	context-	dependent	 (McGill	 et	al.,	2006),	 isolating	ecolog-
ically	 relevant	 traits	 along	 single	 environmental	 axes	 is	 challenging,	
and	excluding	traits	becomes	increasingly	difficult	as	we	consider	the	
numerous	axes	forming	a	species’	biotic	and	abiotic	niche.

Another	approach	to	identifying	representative	traits	entails	select-
ing	orthogonal	trait	axes.	For	example,	to	understand	niche	variation	
along	one	important	ecological	spectrum	(woody	plant	strategy),	Kraft,	
Valencia,	and	Ackerly	 (2008)	sampled	“distinct”	 life	form,	 leaf,	wood,	
and	seed	trait	axes.	However	in	our	study,	vegetative	trait	combina-
tions	outperformed	combinations	of	vegetative	and	floral	traits,	at	a	
given	number	of	traits	(Figure	4).	Further,	the	most	successful	combi-
nations	of	few	traits	were	not	predictable	beforehand	based	on	inclu-
sion	of	different	trait	groups	(Figure	5).

Nonetheless,	 combinations	 of	 less	 highly	 correlated	 traits	 did	
detect	 more	 interspecific	 phenotypic	 differences	 (Figure	6).	 Due	 to	
trait	correlations,	even	datasets	of	up	to	67	traits	measured	on	over	
40	 species	 can	 be	 condensed	 into	 about	 six	 orthogonal	 composite	
“trait”	dimensions	(Laughlin,	2014).	Perhaps,	then,	the	major	challenge	
in	implementing	Laughlin’s	(2014)	recommendation	to	sample	across	
independent	trait	axes	lies	in	identifying	these	orthogonal	axes	before 

measuring	traits,	as	traits	may	be	highly	correlated	across	organs	and	
predicted	functions.

Our	sampling	revealed	some	expected	and	some	more	surprising	
patterns	in	pairwise	trait	correlations	across	species	(Table	S1).	Among	
vegetative	traits,	plant	height,	stem	width,	and	leaf	perimeter	showed	
the	 highest	 pairwise	 correlations	 (r	=	.71–.87),	 forming	 a	 vegetative	
axis	of	plant	size.	To	a	lesser	degree,	leaf	number	was	also	correlated	
with	these	size-	axis	traits	(r =	.40–.52).	Among	floral	traits,	floral	buds,	
flowers,	 and	 seed	 pods	 were	 most	 highly	 correlated	 (r =	.58–.73),	
indicating	phenological	overlap	among	different	stages	of	floral	pro-
duction	 (plants	with	numerous	buds	 tended	 to	 simultaneously	 have	
numerous	open	flowers	and	maturing	 seed	pods).	Thus,	 these	 traits	
comprise	an	axis	of	floral	production,	where	certain	plants	are	gener-
ally	more	floriferous.

Many	 of	 the	 highest	 pairwise	 correlations	 among	 vegetative	
and	floral	 traits	were	 seen	 among	 these	vegetative	 size	 and	floral	
production	traits	(e.g.,	r =	.76	between	stem	width	and	the	number	
of	floral	buds;	Table	S1).	This	suggests	that	 larger	plants	produce	a	
greater	absolute	number	of	reproductive	structures,	consistent	with	
work	showing	that	larger	plants	even	allocate	relatively	more	(given	
their	vegetative	biomass)	in	reproduction	as	nutrient	levels	increase	
(e.g.,	Sugiyama	&	Bazzaz,	1998).	Across	angiosperm	evolution,	tran-
sitions	from	outcrossing	to	self-	fertilizing	are	so	often	accompanied	
by	 reductions	 in	 floral	 size	 and	 herkogamy	 that	 small	 flowers	 and	
low	stigma–anther	separation	have	been	described	as	part	of	a	“self-
ing	 syndrome”	 (Sicard	 &	 Lenhard,	 2011),	 and,	 consequently,	 we	
had	anticipated	that	some	of	our	highest	trait	correlations	might	be	
among	measures	of	corolla	size	and	herkogamy.	Unexpectedly,	her-
kogamy	was	most	highly	correlated	with	vegetative	size	traits	rather	
than	floral	size	traits.

These	 relatively	 high	 correlations	 among	 vegetative	 and	 floral	
traits	may	help	explain	the	combined	constrained	dataset’s	poor	per-
formance.	 The	 average	 absolute	 pairwise	 trait	 correlation	 between	
floral	and	vegetative	traits	is	nearly	identical	to	that	within	either	floral	
or	vegetative	trait	groups	(r	=	.3).	Whereas	for	all	other	datasets,	the	
two	 composite	 “traits”	 used	 in	 the	 LDA	were	 orthogonal	 (produced	
by	a	single	PCoA),	the	separate	floral	and	vegetative	axes	used	in	the	
combined	constrained	approach	may	still	have	contained	 redundant	
information.

Our	results	highlight	that	trait	choice	impacts	estimates	of	 inter-
specific	phenotypic	similarity,	as	the	sampled	species	were	generally	
more	distinct	along	vegetative	axes.	In	contrast,	certain	species,	such	
as	M. mephiticus,	were	only	well	distinguished	using	floral	traits.	That	
is,	 some	 species	will	 be	 redundant	 along	one	 axis	 but	 unique	 along	
others.	Therefore,	although	including	more	traits	increased	the	aver-
age	phenotypic	differences	captured	(Figure	4),	 if	 the	goal	 is	 instead	
to	 ensure	 that	 phenotypic	 differences	 are	 adequately	 captured	 for	
all	 species,	 researchers	may	need	to	 identify	and	 include	 those	 trait	
axes	that	best	distinguish	certain	suites	of	species.	Although	the	floral	
traits	appeared	somewhat	conserved	across	these	tube-	flowered	spe-
cies,	floral	 traits	may	differentiate	species	with	greater	phylogenetic	
scope	 (encompassing	disk	flowers	of	Aster	 and	 spikes	of	Pedicularis,	
for	example).
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In	our	study,	correct	assignment	increased	with	trait	dimensional-
ity.	This	support	for	a	high-	dimensional	approach	is	echoed	in	the	liter-
ature.	For	example,	Villéger	et	al.	(2011)	assessed	functional	changes	
in	marine	benthos	across	geologic	time	using	two	to	four	composite	
orthogonal	 “trait”	 dimensions.	 Only	 the	 highest	 trait	 dimensionality	
revealed	 significant	 functional	 dissimilarity	 among	 assemblages.	 In	
addition,	 Laughlin	 (2014)	 analyzed	 trait	 datasets	 from	 six	 different	
systems	 and	 consistently	 found	 that	 including	more	 traits	 improved	
predictions	of	community	composition	(by	better	resolving	phenotypic	
differences	among	species).	This	positive	relationship	began	to	plateau	
after	four	to	eight	traits	in	Laughlin’s	(2014)	study,	unlike	in	our	work.	
We	found	that	additional	traits	revealed	further	interspecific	pheno-
typic	differences	even	when	considering	many	more	traits	than	com-
monly	used	in	trait-	based	studies	that	include	intraspecific	variation.	
This	suggests	that	much	of	the	trait	literature	may	be	underestimating	
phenotypic	variation	among	species.

As	 support	 for	 both	 representative	 and	 high-	dimensional	
approaches	can	be	found	 in	 the	 literature,	we	propose	that	 (1)	geo-
graphic	 scale	 and	 (2)	 question	 scope	 may	 delineate	 when	 each	
approach	 is	 preferable.	 The	 leaf–height–seed	 scheme,	 a	 key	 exam-
ple	of	the	representative	approach,	was	designed	for	comparisons	at	

a	 global,	 rather	 than	 regional	 or	 community,	 scale	 (Westoby,	 1998).	
Similarly,	at	local	scales,	trait	relationships	within	the	leaf	economics	
spectrum	may	be	weaker	and	context-	dependent,	influenced	by	envi-
ronment,	 historical	 biogeography,	 and	 a	 reduction	 in	 trait	 variation	
(Funk	&	Cornwell,	2013;	Wright	et	al.,	2004).	Within	herbaceous	sys-
tems	such	as	ours,	seasonality	limits	leaf	life	span,	reducing	this	trait’s	
variation	 and	 responsiveness	 to	 other	 leaf	 economics	 traits	 (Funk	
&	Cornwell,	 2013).	That	 is,	 herbaceous	plants	 that	 invest	 in	 thicker	
leaves	may	not	see	a	corresponding	increase	in	leaf	longevity,	possibly	
reducing	the	usefulness	of	this	suite	of	traits	for	many	communities.	
A	high-	dimensional	approach	may	be	most	appropriate	at	regional	and	
community	scales,	where	trait	diversity	is	shaped	by	a	series	of	envi-
ronmental	“filters,”	each	potentially	acting	on	different	traits	(Lavorel	
&	Garnier,	2002).

Certain	questions	may	be	best	addressed	using	a	high-	dimensional	
approach.	 In	 a	 French	Alpine	 grassland	 study,	models	 including	 abi-
otic	variables	and	just	two	of	five	measured	plant	traits	best	predicted	
ecosystem	properties	such	as	green	biomass	and	soil	carbon	(Lavorel	
et	al.,	2011).	However,	because	these	different	ecosystem	properties	
invoked	nonoverlapping	sets	of	traits,	understanding	ecosystem	mul-
tifunctionality	would	require	more	traits.	Similarly,	Kraft,	Godoy,	and	

F I G U R E  7 Correct	assignment	versus	number	of	traits,	by	species	and	populations.	The	effect	of	the	number	of	traits	used	on	correct	
assignment	of	individuals	to	species,	for	all	trait	datasets	(panels).	For	most	species	(a)	and	M. primuloides	populations	(b),	species	appear	more	
distinct	when	more	traits	are	considered.	Variation	among	species	(a)	and	among	populations	(b)	in	measurable	species	differences	are	of	similar	
magnitude.	Note	that	both	(a)	and	(b)	display	how	readily	species	were	distinguished	from	other	Mimulus	species;	only	one	M. primuloides	was	
sampled	in	a	given	run,	as	part	of	a	multispecies	comparison.	SE	bars	are	shown.	The	combined	constrained	trait	dataset	used	separate	principal	
coordinates	analyses	in	linear	discriminant	analysis	(LDA)	preprocessing	such	that	one	axis	subsequently	input	into	the	LDA	was	constrained	to	
be	solely	vegetative,	and	the	other	floral

(a)

(b)
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Levine	(2015)	found	that	no	single	functional	trait	explained	observed	
patterns	 of	 plant	 coexistence;	 instead,	 stabilizing	 niche	 differences	
were	only	discernable	when	multiple	functional,	structural,	and	phe-
nological	 traits	were	 considered,	 as	 plants	may	 partition	 their	 envi-
ronments	along	numerous	axes.	Future	 research	 should	continue	 to	
clarify	when	higher	trait	dimensionality	is	necessary.

High-	dimensional	trait	sampling	is	compatible	with	the	three	major	
goals	of	functional	ecology,	distilled	by	McGill	et	al.	(2006):	elucidating	
mechanisms,	achieving	generality	across	systems,	and	moving	toward	
predictive	functional	ecology.	With	a	high-	dimensional	approach,	post	
hoc	 analysis	 may	 help	 identify	 trait–environment	 relationships	 and	
candidate	traits	for	subsequent	experimentation.	Although	represen-
tative	strategies	have	greatly	advanced	functional	ecology	by	provid-
ing	useful	comparisons	at	 the	biogeographic	scale,	high-	dimensional	
approaches	 need	 not	 preclude	 some	 degree	 of	 generality.	Westoby	
and	 Wright	 (2006)	 have	 expanded	 the	 leaf–height–seed	 scheme	
with	 additional	 traits	 (e.g.,	 root:shoot	 ratios,	 growth	 strategies),	 and	
reproductive	traits	could	be	incorporated.	Lastly,	Lavorel	and	Garnier	
(2002)	proposed	dividing	traits	 into	“response”	and	“effect”	traits,	to	
predict	how	community	functioning	will	be	impacted	as	traits	respond	
to	environmental	change.	Fitting	additional	traits	into	this	framework	
is	worthwhile,	 as	 environmental	 change	may	 occur	 along	 numerous	
axes	and	we	are	evermore	interested	in	multiple	ecosystem	functions.

4.2 | Quantifying phenotypic dissimilarity

Existing	 theory	makes	 contrasting	predictions	 regarding	phenotypic	
dissimilarity	 of	 co-	occurring	 species.	 Phenotypes	 may	 diverge	 to	
reduce	niche	overlap	and	competition	(limiting	similarity;	MacArthur	
&	 Levins,	 1967).	 Alternatively,	 fitness-	related	 traits	 may	 converge,	
reducing	competitive	asymmetries	and	allowing	coexistence	(Chesson,	
2000).	Trait	convergence	may	also	result	from	environmental	“filters”	
limiting	the	range	of	permissible	phenotypes	(Keddy,	1992).

In	 our	 study,	 certain	 species	 were	 less	 well	 discriminated	 than	
others,	depending	on	the	trait	dataset	used.	Similarly,	Harmon	et	al.	
(2005),	studying	Anolis	lizard	radiations,	noted	that	specialist	species	
converged	along	certain	morphological	axes	but	diverged	along	others.	
Here,	M. mephiticus	and	M. leptaleus	were	sampled	at	 the	same	dry,	
disturbed	site,	and	M. guttatus	and	M. moschatus	co-	occurred	in	a	wet	
meadow.	Perhaps	due	to	this	“harsher”	shared	environment,	M. mephit-
icus	 and	M. leptaleus	 had	 similar	 vegetative	 trait	 values	 (Figure	1).	
However,	they	had	more	distinctive	floral	traits	(Figure	2),	consistent	
with	 a	 macroecological	 study	 showing	 greater	 floral	 divergence	 in	
sympatric	sister	species	in	Mimulus	(Grossenbacher	&	Whittall,	2011).	
We	 observed	 the	 opposite	 pattern	 of	 trait	 convergence	 in	 the	M. 
guttatus–M. moschatus	 pair,	 perhaps	 due	 to	 less	 restrictive	 environ-
mental	conditions	but	a	limited	pollinator	pool.	Indeed,	other	studies	
have	demonstrated	that	these	two	contrasting	processes	may	operate	
simultaneously	and	that	their	effects	may	vary	across	traits	(Cornwell	
&	Ackerly,	2009;	Kraft	et	al.,	2008).

Studies	are	increasingly	characterizing	intraspecific	variation	to	bet-
ter	understand	ecological	phenomena,	from	trophic	cascades	to	com-
munity	assembly	 to	 range	shifts	 (Angert,	Sheth,	&	Paul,	2011;	Jung,	

Violle,	Mondy,	Hoffmann,	&	Muller,	2010;	Post,	Palkovacs,	Schielke,	&	
Dodson,	2008).	In	our	study,	different	populations	of	a	single	species	
varied	 greatly	 in	 their	 phenotypic	 similarity	with	 other	 species.	This	
among-	population	variation	poses	a	challenge	for	trait-	based	studies.	
At	 macroecological	 scales,	 it	 means	 that	 sampling	 multiple	 popula-
tions	would	most	accurately	depict	overall	 similarity	among	species.	
At	local	scales,	locally	sampled	trait	data,	rather	than	species	means,	
should	 better	 represent	 the	 potentially	 unique	 confluence	 of	 genes	
and	 environment	 found	 at	 a	 site	 (Carmona,	Rota,	Azcárate,	&	Peco,	
2015).	These	 consequences	 of	 intraspecific	variation	 imply	 that	 the	
most	 appropriate	 traits	 for	 characterizing	 species’	 phenotypes	 may	
differ	among	studies,	even	when	the	same	species	are	sampled,	and	
suggest	that	ideal	trait	combinations	may	vary	across	space.

4.3 | Future directions

Our	use	of	readily	measurable	traits	is	both	a	strength	and	a	limitation,	
pointing	to	interesting	research	avenues.	It	allowed	us	to	sample	a	rel-
atively	large	number	of	traits	across	different	plant	organs	and	made	
possible	 our	 comparison	 of	 contrasting	 trait-	sampling	 approaches.	
Our	study	demonstrated	that	using	more	and	different	types	of	traits	
better	 captured	 overall	 phenotypic	 dissimilarity;	 	however,	 detailed	
study	 of	 trait–fitness	 relationships	 across	 heterogeneous	 environ-
ments	would	 be	 needed	 to	 extend	 this	 approach	 to	 understanding	
niche	 differences.	 In	 other	 words,	 to	 determine	 whether	 the	 high-	
dimensional	 phenotypic	 differences	 we	 observed	 among	 species	
reflect	differentiation	across	numerous	niche	axes	 (and	analogously,	
to	determine	whether	phenotypically	similar	species	are	functionally	
redundant),	studies	clarifying	the	ecological	significance	of	a	broader	
suite	of	traits	and	trait	combinations	are	required.	Then,	analyses	such	
as	ours	could	profitably	explore	weighting	traits	by	their	correlation	
with	environmental	gradients	or	fitness.

In	 conclusion,	 many	 ecological	 questions	 require	 understanding	
species’	phenotypic	differences.	However,	despite	the	mounting	num-
ber	 of	 trait-	based	 studies,	 our	 capacity	 to	make	 robust	 conclusions	
and	cross-	study	comparisons	has	been	plagued	by	a	 lack	of	consen-
sus	when	it	comes	to	sampling.	Faced	with	measuring	many	traits	or	
investing	 time	 divining	 the	 best	 trait	 combinations,	 one	 might	 ask:	
“Why	traits?”	Although	phylogenies	can,	in	some	cases,	represent	phe-
notypic	and	ecological	differences	among	species	(Flynn,	Mirotchnick,	
Jain,	Palmer,	&	Naeem,	2011;	Gravel	 et	al.,	 2012),	phenotypic	 traits	
propose	a	mechanism.	For	example,	traits	determine	whether	and	how	
two	organisms	might	 interact	 (Eklöf	et	al.,	2013).	Our	study	 focuses	
attention	 on	 methodological	 decisions	 and	 sampling	 recommenda-
tions	to	propel	this	field	forward.
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