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Abstract
The ecological niche is a multi-dimensional concept including aspects of resource use, 
environmental tolerance, and interspecific interactions, and the degree to which niches 
overlap is central to many ecological questions. Plant phenotypic traits are increasingly 
used as surrogates of species niches, but we lack an understanding of how key sampling 
decisions affect our ability to capture phenotypic differences among species. Using 
trait data of ecologically distinct monkeyflower (Mimulus) congeners, we employed 
linear discriminant analysis to determine how (1) dimensionality (the number and type 
of traits) and (2) variation within species influence how well measured traits reflect 
phenotypic differences among species. We conducted analyses using vegetative and 
floral traits in different combinations of up to 13 traits and compared the performance 
of commonly used functional traits such as specific leaf area against other morphological 
traits. We tested the importance of intraspecific variation by assessing how population 
choice changed our ability to discriminate species. Neither using key functional traits 
nor sampling across plant functions and organs maximized species discrimination. 
When using few traits, vegetative traits performed better than combinations of 
vegetative and floral traits or floral traits alone. Overall, including more traits increased 
our ability to detect phenotypic differences among species. Population choice and the 
number of traits used had comparable impacts on discriminating species. We addressed 
methodological challenges that have undermined cross-study comparability of trait-
based approaches. Our results emphasize the importance of sampling among-
population trait variation and suggest that a high-dimensional approach may best 
capture phenotypic variation among species with distinct niches.

K E Y W O R D S
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1  | INTRODUCTION

Niche theory argues that phenotypic differences among species influ-
ence interspecific interactions, environmental tolerances, and resource 
exploitation (De León, Podos, Gardezi, Herrel, & Hendry, 2014; Eklöf 
et al., 2013; Givnish, 1987). In ecology, there has been a concep-
tual shift to trait-based approaches that capture these phenotypic 

determinants of the niche (Cadotte, Carscadden, & Mirotchnick, 
2011; McGill, Enquist, Weiher, & Westoby, 2006), and this trait-based 
approach is increasingly used to understand community assembly, 
coexistence, and ecosystem function (Díaz & Cabido, 2001; Shipley, 
Vile, & Garnier, 2006; Silvertown, 2004).

Despite an increased interest in trait-based approaches, meth-
odological issues and critical assumptions may limit their general 
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applicability. Although the number (Maire, Grenouillet, Brosse, & 
Villéger, 2015; Villéger, Novack-Gottshall, & Mouillot, 2011) and iden-
tity of traits used (Harmon, Kolbe, Cheverud, & Losos, 2005; Spasojevic 
& Suding, 2012) may alter inferences, a wide variety of trait-sampling 
approaches are used. Similarly, intraspecific variation may be a critical 
component of ecological patterns and processes (Bolnick et al., 2011; 
Violle et al., 2012), but much trait-based work has used species-level 
means or neglected trait among-population trait variation (Albert et al., 
2010). Trait-based approaches have been advocated partly because of 
the generality they promise (McGill et al., 2006), but we cannot realize 
this potential of powerful comparison across studies and systems until 
we assess the consequences of different sampling strategies.

The term “trait” is variously defined. Here, a trait is any measur-
able morphological, behavioral, phenological, physiological, or bio-
chemical phenotypic character. Although any of these traits may influ-
ence organismal fitness in certain environments, only traits that have 
been empirically or observationally linked to fitness or performance 
are termed “functional traits” (e.g., McGill et al., 2006). As part of our 
study, we examined phenotypic variation within a species pool and 
evaluated whether species were better differentiated by known func-
tional traits or other phenotypic characters. We contend that many 
understudied traits showing variation among closely related species 
are likely functional in particular biotic or abiotic settings and merely 
lack experimentation. As is common in trait-based studies (Cornelissen 
et al., 2003), we used primarily morphological traits and “soft” func-
tional traits (e.g., plant height), more easily measurable correlates of 
the functional trait of interest (“hard” traits, e.g., competitive ability), 
and although soft and hard traits may be correlated at global scales 
(e.g., Díaz et al., 2004), trait relationships may vary among systems and 
environments (Funk & Cornwell, 2013). Therefore, we focus strictly on 
capturing phenotypic differences among species and emphasize that 
resolving tripartite trait–environment–fitness relationships for a wide 
range of phenotypic characters (i.e., mapping traits to niches) remains 
a key area for development.

Trait-based studies often use one to 20 traits and usually rely 
on one of two distinct approaches to quantifying traits: “repre-
sentative trait” or “high-dimensional” approaches. The represen-
tative trait approach posits that one or few ecologically important 
traits determine species’ success in an abiotic or biotic milieu. For 
example, a single trait, plant biomass, can explain over 60% of vari-
ation in competitive ability among wetland plant species (Gaudet 
& Keddy, 1988). Numerous studies have focused on single func-
tional traits, such as plant height or specific leaf area (SLA), to 
understand competitive differences or patterns of species distri-
bution (Falster & Westoby, 2003; Grime, 1973; Sides et al., 2014). 
These low-dimensional studies use “representative traits” relevant 
to plant-strategy theories. For example, the leaf economics spec-
trum predicts that leaf traits shaping photosynthetic investment 
and return determine the distribution of broad vegetative forms 
across climatic gradients (Wright et al., 2004). Similarly, the leaf–
height–seed scheme posits that combinations of SLA, height, and 
seed mass characterize species’ colonization abilities and responses 
to disturbance (Westoby, 1998).

These plant-strategy traits are predominantly invoked in diverse 
assemblages but may also vary among close relatives and intraspecif-
ically across environments. In co-occurring willow (Salix) congeners, 
among-species variation in several hydrological functional traits cor-
related with differences in habitat affinities (species’ weighted average 
distance to the water table); for example, congeners from wetter hab-
itats showed higher root growth rates and turgor loss points (Savage 
& Cavender-Bares, 2012). Similarly, Matzek (2011) investigated 18 
resource-capture traits in pine (Pinus) species and found that a single 
trait, photosynthetic nitrogen-use efficiency, best explained the more 
rapid growth of invasive compared to noninvasive pines. Within spe-
cies of European forest herbs (Anemone nemorosa and Milium effusum), 
plant height was greater in northerly populations, suggesting that the 
high-latitude populations may be more competitive (De Frenne et al., 
2011).

One type of representative trait approach (exemplified by the leaf–
height–seed scheme) entails sampling across “distinct” trait groups, 
as not all traits are equally informative. As traits are correlated, mea-
surement of certain traits should be redundant, yielding diminishing 
returns as trait dimensionality increases (Laughlin, 2014). Ecologists 
have long grouped traits by expected similarity and function (e.g., 
Raunkiaer, 1934), and sampling across distinct phenotypic axes may 
allow us to measure fewer traits with little loss of phenotypic informa-
tion; however, this intuitive sampling solution requires a rigorous test 
to demonstrate its broader utility.

Representative trait approaches are valued for their mechanistic 
link between environment and species performance (Lepš, de Bello, 
Lavorel, & Berman, 2006; Wright et al., 2004). They may be most 
appropriate when predicting species’ success along a few specific 
niche axes or across large biogeographic gradients. Nonetheless, how 
well these approaches capture phenotypic variation at finer spatial 
scales is poorly understood, and often the “most important” niche 
axis is unknown (Fridley, Vandermast, Kuppinger, Manthey, & Peet, 
2007).

In contrast, many ecological questions may require a high-
dimensional trait-sampling approach. To predict whether one species 
might pollinate another, for example, we need to consider plant and 
pollinator phenological, morphological, and behavioral traits (e.g., 
Eklöf et al., 2013). Investigations of community assembly mechanisms 
(limiting similarity and habitat filtering) are also best addressed by 
examining species in multivariate space (Cornwell, Schwilk, & Ackerly, 
2006) as multiple phenotypic traits shape an organism’s interaction 
with its competitors and environment. Therefore, a high-dimensional 
approach should better approximate the “n-dimensional” ways in 
which species differ (Cornelissen et al., 2003; Pérez-Harguindeguy 
et al., 2013). Using simulations, Maire et al. (2015) demonstrated that 
measuring more traits may better represent a community’s pheno-
typic variation: functional diversity calculated from 10 traits (rather 
than five) more closely approximated the “true” community functional 
diversity. But measuring numerous traits on many individuals and pop-
ulations quickly becomes unfeasible, and research has just begun eval-
uating how trait-sampling decisions impact estimates and applications 
of trait data (de Bello et al., 2011).
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Here, we use an observational dataset of ecologically distinct 
species to explicitly compare how trait dimensionality and population 
sampling influence estimates of species’ phenotypic dissimilarity. We 
assess how well the traits we measure can recover phenotypic differ-
ences among species, using vegetative and floral traits in different 
combinations of up to 13 traits. As we aim to provide a practical sam-
pling guide, we tease apart two key elements of dimensionality: the 
number of traits sampled and the types of traits included. Specifically, 
we evaluate the hypotheses that (1) using more traits, (2) including 
both vegetative and floral traits, and (3) sampling across trait groups 
(e.g., leaf traits, growth form traits) will best capture interspecific phe-
notypic differences. Lastly, we test the importance of intraspecific 
variation by assessing how population choice changes our under-
standing of phenotypic differences among species.

2  | MATERIALS AND METHODS

2.1 | Study system and field collections

In western North America, the monkeyflower genus Mimulus sensu 
lato consists of approximately 120 species, most occurring within 
California. The genus includes phenotypically distinct forms, and 
several monkeyflower species span a considerable geographic and 
environmental range (Sheth, Jiménez, & Angert, 2014) and are charac-
terized by a series of ecomorphs (Wu et al., 2008). The seven species 
sampled here (Mimulus guttatus, M. leptaleus, M. lewisii, M. mephiticus, 
M. moschatus, M. primuloides, and M. tilingii) are ecologically and pheno-
typically distinct (Table 1). Although their phenology and persistence 
are tightly linked to water availability (Hall & Willis, 2006; Williams & 
Levine, 2004), these species diverge in elevational range, microhabitat 
preference, and vegetative phenotype (Table 1). Furthermore, Mimulus 
species differ in pollination syndrome, and the sampled species include 
outcrossers and putative selfing species (Table 1).

To clarify how trait dimensionality impacts measurable interspe-
cific phenotypic differences along abiotic and biotic niche axes, we 
measured eight vegetative and six floral traits (Table 2) in popula-
tions of the seven focal monkeyflower species in summer 2012. We 
selected vegetative traits related to competitive ability, water usage, 
and photosynthetic capacity, and floral traits related to structural dif-
ferences among species and pollen-transfer syndromes.

To include trait variation across environments, we sampled across 
a 1,866-m elevation gradient in the Sierra Nevada Mountains of 
California, in Yosemite National Park and neighboring Inyo National 
Forest. Site selection was opportunistic, based on range maps, 
previous occurrence records, and local habitat descriptions. One 
species, M. primuloides, was more heavily sampled to capture among-
population variation across elevation and habitats, and populations 
spanned soggy high-elevation meadows, river-adjacent populations, 
forest gaps, and dry, disturbed trailsides and ditches. At a given site, we 
placed transects haphazardly to bisect a population along its length, 
and samples of flowering individuals were stratified across the tran-
sect. Individuals missing data for multiple traits were removed before 
analysis, and populations with fewer than nine individuals remaining 

were discarded (this threshold discussed below). This left seven popu-
lations of M. primuloides, in addition to two M. moschatus populations, 
and one population of each of the five remaining species. Leaf counts 
for the M. tilingii population are approximate. Herkogamy for several 
individuals in the M. leptaleus population was estimated to be zero; 
their miniscule flowers prevented nondestructive sampling of this trait 
in certain individuals, but herkogamy and floral size are often tightly 
linked (Sicard & Lenhard, 2011). The cleaned dataset had trait data for 
9–18 individuals per population.

2.2 | Statistical analysis

To determine whether the sampled traits could adequately capture 
phenotypic differences among species, we used linear discriminant 
analysis (LDA; Fisher, 1936; Venables & Ripley, 2002). LDA identifies 
linear combinations of variables that best model the phenotypic differ-
ences among species. With our data, it characterized the phenotype 
of each species and assigned individuals to species based on these 
discriminant “rules.” From this analysis, we assessed how the propor-
tion of individuals correctly assigned to species varied with trait data-
set, dimensionality, and combination. This approach also allowed us to 
determine the proportion of incorrect assignments – the species-level 
information lost using different sampling approaches.

Prior to analysis, continuous traits (all but internode; Table 2) were 
z-score-transformed (e.g., Cornwell et al., 2006). We then created 100 
balanced datasets, each time by randomly selecting a single popu-
lation per each of the seven species, including nine individuals from 
each chosen population. LDA faces a mathematical “small sample size” 
problem as the number of traits approaches the number of samples 
(e.g., Sharma & Paliwal, 2015); hence, our sample size threshold of nine 
individuals per population was selected to maximize our sample size 
without excluding too many of our less highly sampled populations.

Within each balanced dataset, we sequentially chose a trait dataset 
(vegetative, floral, combined, or combined constrained as described 
below), the number of traits to include, and the exact combination of 
traits included, producing a reduced dataset for analysis (Fig. S1 for 
flowchart). Analyses were carried out iteratively: for each of the 100 
balanced datasets, we ran through all permutations of trait datasets 
and numbers of traits, randomly sampling up to 100 different trait com-
binations per number of traits. This amounted to 1,021 unique trait 
combinations for each of the balanced datasets. For each trait com-
bination, we calculated Gower’s distance (Gower, 1971) using daisy 
within R package cluster (https://cran.r-project.org/web/packages/
cluster/index.html) and used this distance matrix for all subsequent 
analyses. Gower’s distance is commonly used in trait-based ecological 
work because it accommodates different data types (e.g., binary, con-
tinuous) and permits missing values by ascribing them no weight in the 
distance calculation (e.g., Maire et al., 2015; Villéger et al., 2011). All 
analyses were conducted in R (version 3.1.2, https://www.R-project.
org), and trait data and code are included in the supplement.

In a common solution to sample-size-based mathematical con-
straints of LDA (few individuals, many traits), we first used prin-
cipal coordinates analysis (PCoA) on the Gower’s distance matrix 
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constructed from each selected combination of traits as a preprocess-
ing step (Baker & Logue, 2003; Fukunaga, 1990; Sharma & Paliwal, 
2015) and passed the first two major axes as input “traits” to the LDA. 
These first two axes should capture the vast majority of phenotypic 

variation: in ordinations of the full dataset, the first two PCoA axes 
in combination explained 86.8% of variation using vegetative traits 
(Figure 1), and 84.3% using floral traits (Figure 2). To further ensure 
that only using the first two PCoA axes from this preprocessing step 

TABLE  1 Focal Mimulus species: Californian geographic range, elevation range, general habitat affinities, and phenotypic descriptions
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did not drive the results, we conducted smaller (3 species with 12+ 
individuals each) parallel analyses using two and eight PCoA axes in the 
LDA (details in SI). With the exception of the floral-only dataset for M. 
lewisii and M. primuloides population 7 (which showed greater assign-
ment success with eight PCoA axes), the results were qualitatively very 
similar using two and eight PCoA axes (Figs. S2 and S3). Therefore, we 
report results from the larger dataset, using two PCoA axes. In previous 
work, “dimensionality” refers to the number of composite orthogonal 
phenotypic axes used (Maire et al., 2015; Villéger et al., 2011); thus, 
dimensionality encapsulates both the number and type of traits used 
to estimate phenotypic space. Our definition of dimensionality follows 
this concept but differs operationally. We vary the number and type of 
input traits, but as outlined above, our reported results are all gener-
ated using the same number of composite orthogonal trait axes (two).

To explore the impact of different ways of incorporating floral and 
vegetative trait data, we used four separate trait grouping approaches: 
vegetative traits only, floral traits only, combined traits, and combined 
constrained traits (explained below). In the combined traits approach, 
selected traits were input into a single PCoA to generate two com-
posite “trait” axes for the subsequent LDA. This could mean that each 
axis contained vegetative and floral information, but it also allowed 
the more variable trait type to dominate. In contrast, the combined 
constrained traits approach used separate PCoAs such that one axis 
subsequently input into the LDA was constrained to be solely vegeta-
tive and the other solely floral.

We assessed whether high-dimensional approaches provided addi-
tional phenotypic information by determining whether the proportion 
of individuals correctly assigned to species increased with the num-
ber of traits included. We evaluated the representative trait-sampling 
approach in three ways. First, we performed LDA using single traits to 
determine whether species were better discriminated by single func-
tional traits or other morphological traits (using only traits with com-
plete field data and which were variable within subsampled species). 
Second, we grouped the 14 measured traits a priori into “logical” clus-
ters thought to represent different aspects of plant function and life his-
tory. Vegetative traits were divided into plant size, leaf, and growth form 
traits, and floral traits comprised plant structure and investment strat-
egies, floral size, and pollen transfer traits (Table 2). We predicted that 
trait combinations incorporating more of these trait groups would cap-
ture more unique phenotypic information. Third, to determine whether 
less strongly correlated traits would better differentiate species, we 
calculated the average absolute pairwise correlation within each vege-
tative or floral trait combination (using all individuals, populations, and 
species) and evaluated its average assignment success. We represent 
the impact of sampling decisions on correct assignment as odds ratios.

Logistically, an ideal sampling strategy entails measuring the few-
est traits with minimal information loss. Therefore, we identified the 
best and worst four-trait combinations (falling within the fourth or first 
quartiles, respectively, of assignment success across all numbers of 
traits included). Vegetative and floral datasets were treated separately.

Trait dataset Trait group Traits Measurement method

Vegetative Size Plant height To top of vegetation

Leaf number Counted all leaves

Leaf Specific leaf area 
(SLA)

Fresh leaf area/dry 
massa

Leaf perimeter Sum of all marginsa

Leaf aspect ratio Leaf length/widtha

Leaf circularity Measure of roundnessa

Growth form Internode Observed rosette or not

Stem width Width at basal leaf pair

Floral Structure/investment Flower number Counted or estimated 
all

Bud number Counted all buds

Pod number Counted or estimated 
all

Floral size Corolla length Tube length, from 
where corolla joins 
peduncle to beginning 
of corolla lobes

Corolla width Tube width, at widest 
point below corolla 
lobes

Pollen transfer Herkogamy Stigma–anther 
separation

aArea and leaf traits measured on 2–4 leaves per individual, in ImageJ (Schneider, Rasband, & Eliceiri, 
2012).
Circularity = 4π(area/perimeter2).

TABLE  2 Measurement and grouping of 
vegetative and floral traits: Traits were 
grouped a priori by expected similarity and 
function
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3  | RESULTS

3.1 | Trait dimensionality

No single trait performed best for all species (Figure 3). Single 
functional traits, such as SLA and height, did not capture any more 
among-species variation than did other morphological traits. Instead, 
different species were better distinguished by different traits (Fig. S4). 
For example, correct assignment of individuals to species using only 
SLA averaged approximately 75% for M. moschatus but was below 
25% for several other species including M. guttatus (Fig. S4). Although 
not distinctive in several leaf traits (e.g., SLA, circularity), M. guttatus 
was best distinguished using leaf aspect ratios. Generally, M. leptaleus 
individuals were well discriminated using corolla width but not plant 
height. These findings suggest that to capture interspecific phenotypic 
differences, we need to measure multiple traits. Further, the identity 
of these traits may vary among assemblages.

All multidimensional approaches outperformed the average single 
trait (41% correct assignment; Figure 3), and overall, including more 
traits increased correct assignment. On average, the odds of correct 
assignment increased about twofold over the range of numbers of 
traits investigated, as the proportion of correct assignment rose from 
0.644 using four traits to 0.788 using 13 (Figure 4). Using few traits, 
combinations of vegetative traits most easily discriminated species 
(Figure 4). Within both vegetative and floral trait datasets, traits varied 
from virtually orthogonal to strongly correlated (absolute values of r 
.00–.87; Table S1), making it unlikely that differences in trait correla-
tions drove the different performances of multidimensional vegetative 
and floral trait combinations. Counter to our prediction that drawing 
across floral and vegetative trait axes would be most informative, when 
few traits were used, both combined trait datasets performed below 
even an average of the independent vegetative and floral success 
(Figure 4). Using six traits, for example, the odds of correct assignment 
using vegetative traits were 1.4-fold greater than with the combined 

F I G U R E   1 Phenotypic overlap of 
species in multivariate vegetative trait 
space. The principal coordinates analysis 
(PCoA) used Gower’s distance on the full 
dataset (all populations and individuals) and 
all standardized vegetative traits

F IGURE  2 Phenotypic overlap of 
species in multivariate floral trait space. 
The principal coordinates analysis (PCoA) 
used Gower’s distance on the full dataset 
(all populations and individuals) and all 
standardized floral traits
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constrained dataset. When more traits were used, the combined trait 
dataset yielded the greatest correct assignment of individuals to spe-
cies (81.5% at 13 traits). However, the correct assignment rate using 
eight vegetative traits was similar (77.8%) and performed as well as 10 
traits from the combined trait dataset. The odds of correct assignment 
using eight vegetative traits were 1.1 times better than using even the 
full combined constrained dataset (13 traits).

As expected, certain trait combinations captured more interspe-
cific phenotypic differences. Many low-dimension trait combinations 
performed as well as, or better than, several higher-dimension trait 
combinations. Among combinations of four traits, the odds of correct 
assignment using the best-performing trait combination were greater 
than the least informative combination by 2.8-  to 4.1-fold, using 
vegetative and floral traits, respectively (Figure 5). Plant height and 
leaf aspect ratio featured in all eight of the best four-trait vegetative 
combinations (Table 2 for traits). SLA appeared in 22 of the 31 worst 
(bottom quartile) four-trait vegetative combinations. Leaf number, 
internode (rosette or not), and leaf perimeter and circularity were also 
common in poorly-performing combinations. The best four-trait flo-
ral combinations consistently contained corolla width, corolla length 
and herkogamy, in addition to a floral investment trait (e.g., number 
of flowers). In contrast, the least informative four-trait floral combi-
nations contained all three structural/investment traits, coupled with 
herkogamy or a measure of corolla size. These best and worst trait 

F I G U R E   3 Correct assignment of individuals to species using 
single traits. No single trait performed best for all species, and 
“functional” traits such as SLA and height (white boxplots) were not 
noticeably better than morphological traits such as leaf aspect ratio. 
Only traits for which complete field data were available and which 
were variable within subsampled species were used in this analysis. 
Boxplots summarize data from all 100 runs

F I G U R E   4 Correct assignment of individuals to species versus 
number of traits. Correct assignment of individuals to species 
increased on average as more traits were considered and varied 
with trait dataset used. Vegetative traits outperformed floral or 
combined datasets at comparable numbers of traits. The combined 
constrained trait dataset used separate principal coordinates analyses 
in linear discriminant analysis (LDA) preprocessing such that one 
axis subsequently input into the LDA was constrained to be solely 
vegetative, and the other floral. SE bars are shown

F I G U R E   5 Correct assignment versus number of traits, by trait 
groups. The relationship between correct assignment to species and 
number of traits, broken down by the number of trait groups (see 
Table 2) incorporated in trait combinations, for (a) vegetative and (b) 
floral trait datasets. Dots indicate average correct assignment for 
each trait combination and are jittered to reduce overlap. Particularly 
for vegetative traits, sampling across trait groups did not substantially 
increase measurable species differences

(a)

(b)
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combinations were not predictable beforehand: sampling traits strate-
gically across a greater number of “logical trait groups” (e.g., leaf traits, 
growth form traits; Table 2) thought a priori to capture unique pheno-
typic axes did not increase correct assignment (Figure 5).

Nonetheless, combinations of less correlated traits were more 
informative. A decrease in the average absolute pairwise correla-
tion within trait combinations from 0.5 to 0.2 improved the odds 
of correct assignment 1.3-  to 2.1-fold using vegetative or floral 
traits, respectively (Figure 6). Although these trait datasets appear 
to show different trends and point spreads (Figure 6), we attribute 
this primarily to the larger number of vegetative combinations, 
spanning a wider range of numbers of traits included and assign-
ment success.

Both the average assignment success and its relationship with the 
number of traits included varied among species. For example, using 
four vegetative traits, the average correct assignment was 80.9% for 
M. lewisii but only 46.2% for M. mephiticus (Figure 7a). Correct assign-
ment also varied with trait dataset (panels in Figure 7a); as a case in 
point, M. lewisii was much better distinguished using vegetative rather 
than floral traits (80.9% vs. 53.8% success, respectively). For most 
species, correct assignment showed either a slight and plateauing or 
strong positive relationship with the number of traits, using either 
combined trait dataset (Figure 7a). However, using more traits did not 
improve correct assignment for two of seven species when a subset of 
traits was used (vegetative or floral), and the identity of these species 

differed depending on the subset used (Figure 7a). These dissimilar 
patterns in LDA assignment, among species and among trait datasets, 
are understood by examining phenotypic overlap among species in 
multivariate trait space. Species overlapping heavily in either vegeta-
tive (Figure 1) or floral (Figure 2) trait space were poorly discriminated 
using that trait dataset, even when numerous traits were considered 
(Figure 7a). Therefore, in speciose assemblages, multiple suites of 
traits would best capture species’ phenotypic differences.

3.2 | Population choice

The effects of varying the number of traits included were qualitatively 
similar for populations of M. primuloides as they were for the Mimulus 
species discussed above; however, correct assignment increased with 
additional floral traits for all M. primuloides populations (Figure 7b).

Populations differed in their phenotypic similarity with other 
Mimulus species (Figure 7b), as further evidenced by the spe-
cies to which populations were most often misassigned (Fig. S5b). 
Population 4 was phenotypically distinctive, while when many traits 
were included, population 3 was most alike M. mephiticus, and pop-
ulation 2 was most alike M. tilingii. Population 5 of M. primuloides 
was misassigned to M. tilingii about 10% of the time using four traits, 
but hardly ever using eight traits (Fig. S5b), stressing the combined 
influence of trait dimensionality and population choice on species 
discrimination.

Population choice had a large effect on the odds of correctly dis-
criminating species, particularly when vegetative traits were included. 
Within combinations of four vegetative traits, sampling the most 
distinct M. primuloides population (compared to the least distinct) 
increased the odds ratio by 9.6 times (Figure 7b), whereas the odds 
ratio increased just under fivefold between the least and most dis-
tinct species (M. mephiticus and M. lewisii, respectively; Figure 7a). 
Population choice also had a large impact on correct assignment com-
pared to the effect of increasing the number of traits included: using 
the combined trait dataset, increasing the number of traits from 4 
to 13 resulted in a 2.4-fold boost in the odds of correct assignment 
(Figure 4).

4  | DISCUSSION

Our results demonstrate that trait and population sampling deci-
sions have important impacts on our ability to estimate phenotypic 
differences among species. Using ecologically distinct congeners, 
we showed that high-dimensional trait sampling estimates pheno-
typic differences among species better than representative traits 
chosen a priori. Moreover, our results show that the trait combina-
tions that distinguish species may change not only as different spe-
cies are considered, but also as different populations within species 
are included in an analysis. These findings have important implica-
tions for the way that trait sampling is conducted and compared 
across studies and for how phenotypic differences among species 
are interpreted.

F I G U R E   6 Correct assignment versus trait correlation. Correct 
assignment of individuals to species as a function of the average 
absolute pairwise correlation between traits in a trait combination, 
for floral and vegetative trait datasets. Points are sized by the number 
of traits in a combination (larger points are combinations with more 
traits). Correct assignment decreased as traits within a combination 
became more highly correlated, using floral (y = −0.56x + 0.84) and 
vegetative (y = −0.16x + 0.75) trait datasets
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4.1 | Trait dimensionality

Trait dimensionality is increasingly recognized as an important issue in 
ecology and evolutionary biology. It can alter which mechanisms we 
believe are driving patterns of functional diversity (Maire et al., 2015), 
clarify why we detect local adaptation in some studies but not oth-
ers (MacPherson, Hohenlohe, & Nuismer, 2015), and as demonstrated 
here, shape our perception of phenotypic differences among species.

The utility of a representative trait approach has been shown 
by studies comparing different trophic levels or growth forms and 
looking across diverse communities and environments, often at a 
biogeographic scale. Examining the number of traits needed to pre-
dict species interactions in different ecological networks, Eklöf et al. 
(2013) analyzed studies using 6–21 traits and reported that little 
improvement was seen beyond three traits. In these studies, 11%–
100% of network structure was predictable using even a single trait, 
although the identity of this key trait varied among networks. Similarly, 
plant height is a compelling representative trait of plant competitive 
ability, particularly when trying to capture competitive differences 
among very different growth forms and along a single resource axis: 
light (Falster & Westoby, 2003). Lastly, leaf economics spectrum traits 
have successfully predicted growth and survival of diverse plant types 
(Poorter & Bongers, 2006) and explained variation in litter decompo-
sition across biomes (Cornwell et al., 2008; but see Jackson, Peltzer, & 
Wardle, 2013 who demonstrated that within-species variation in leaf 
economics spectrum traits did not explain litter decomposition).

Our study found no evidence that species differed more in “func-
tional” traits (potentially relating to resource acquisition, competitive 
interactions, or plant–pollinator dynamics) than they did in other mor-
phological traits (Figure 3). Although it has been argued that only traits 
with clear ecological function should be incorporated in ecological 
studies (e.g., Lepš et al., 2006), other traits may be equally important 
for several reasons: the definition of “functional trait” can be very 
broad and context-dependent (McGill et al., 2006), isolating ecolog-
ically relevant traits along single environmental axes is challenging, 
and excluding traits becomes increasingly difficult as we consider the 
numerous axes forming a species’ biotic and abiotic niche.

Another approach to identifying representative traits entails select-
ing orthogonal trait axes. For example, to understand niche variation 
along one important ecological spectrum (woody plant strategy), Kraft, 
Valencia, and Ackerly (2008) sampled “distinct” life form, leaf, wood, 
and seed trait axes. However in our study, vegetative trait combina-
tions outperformed combinations of vegetative and floral traits, at a 
given number of traits (Figure 4). Further, the most successful combi-
nations of few traits were not predictable beforehand based on inclu-
sion of different trait groups (Figure 5).

Nonetheless, combinations of less highly correlated traits did 
detect more interspecific phenotypic differences (Figure 6). Due to 
trait correlations, even datasets of up to 67 traits measured on over 
40 species can be condensed into about six orthogonal composite 
“trait” dimensions (Laughlin, 2014). Perhaps, then, the major challenge 
in implementing Laughlin’s (2014) recommendation to sample across 
independent trait axes lies in identifying these orthogonal axes before 

measuring traits, as traits may be highly correlated across organs and 
predicted functions.

Our sampling revealed some expected and some more surprising 
patterns in pairwise trait correlations across species (Table S1). Among 
vegetative traits, plant height, stem width, and leaf perimeter showed 
the highest pairwise correlations (r = .71–.87), forming a vegetative 
axis of plant size. To a lesser degree, leaf number was also correlated 
with these size-axis traits (r = .40–.52). Among floral traits, floral buds, 
flowers, and seed pods were most highly correlated (r = .58–.73), 
indicating phenological overlap among different stages of floral pro-
duction (plants with numerous buds tended to simultaneously have 
numerous open flowers and maturing seed pods). Thus, these traits 
comprise an axis of floral production, where certain plants are gener-
ally more floriferous.

Many of the highest pairwise correlations among vegetative 
and floral traits were seen among these vegetative size and floral 
production traits (e.g., r = .76 between stem width and the number 
of floral buds; Table S1). This suggests that larger plants produce a 
greater absolute number of reproductive structures, consistent with 
work showing that larger plants even allocate relatively more (given 
their vegetative biomass) in reproduction as nutrient levels increase 
(e.g., Sugiyama & Bazzaz, 1998). Across angiosperm evolution, tran-
sitions from outcrossing to self-fertilizing are so often accompanied 
by reductions in floral size and herkogamy that small flowers and 
low stigma–anther separation have been described as part of a “self-
ing syndrome” (Sicard & Lenhard, 2011), and, consequently, we 
had anticipated that some of our highest trait correlations might be 
among measures of corolla size and herkogamy. Unexpectedly, her-
kogamy was most highly correlated with vegetative size traits rather 
than floral size traits.

These relatively high correlations among vegetative and floral 
traits may help explain the combined constrained dataset’s poor per-
formance. The average absolute pairwise trait correlation between 
floral and vegetative traits is nearly identical to that within either floral 
or vegetative trait groups (r = .3). Whereas for all other datasets, the 
two composite “traits” used in the LDA were orthogonal (produced 
by a single PCoA), the separate floral and vegetative axes used in the 
combined constrained approach may still have contained redundant 
information.

Our results highlight that trait choice impacts estimates of inter-
specific phenotypic similarity, as the sampled species were generally 
more distinct along vegetative axes. In contrast, certain species, such 
as M. mephiticus, were only well distinguished using floral traits. That 
is, some species will be redundant along one axis but unique along 
others. Therefore, although including more traits increased the aver-
age phenotypic differences captured (Figure 4), if the goal is instead 
to ensure that phenotypic differences are adequately captured for 
all species, researchers may need to identify and include those trait 
axes that best distinguish certain suites of species. Although the floral 
traits appeared somewhat conserved across these tube-flowered spe-
cies, floral traits may differentiate species with greater phylogenetic 
scope (encompassing disk flowers of Aster and spikes of Pedicularis, 
for example).
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In our study, correct assignment increased with trait dimensional-
ity. This support for a high-dimensional approach is echoed in the liter-
ature. For example, Villéger et al. (2011) assessed functional changes 
in marine benthos across geologic time using two to four composite 
orthogonal “trait” dimensions. Only the highest trait dimensionality 
revealed significant functional dissimilarity among assemblages. In 
addition, Laughlin (2014) analyzed trait datasets from six different 
systems and consistently found that including more traits improved 
predictions of community composition (by better resolving phenotypic 
differences among species). This positive relationship began to plateau 
after four to eight traits in Laughlin’s (2014) study, unlike in our work. 
We found that additional traits revealed further interspecific pheno-
typic differences even when considering many more traits than com-
monly used in trait-based studies that include intraspecific variation. 
This suggests that much of the trait literature may be underestimating 
phenotypic variation among species.

As support for both representative and high-dimensional 
approaches can be found in the literature, we propose that (1) geo-
graphic scale and (2) question scope may delineate when each 
approach is preferable. The leaf–height–seed scheme, a key exam-
ple of the representative approach, was designed for comparisons at 

a global, rather than regional or community, scale (Westoby, 1998). 
Similarly, at local scales, trait relationships within the leaf economics 
spectrum may be weaker and context-dependent, influenced by envi-
ronment, historical biogeography, and a reduction in trait variation 
(Funk & Cornwell, 2013; Wright et al., 2004). Within herbaceous sys-
tems such as ours, seasonality limits leaf life span, reducing this trait’s 
variation and responsiveness to other leaf economics traits (Funk 
& Cornwell, 2013). That is, herbaceous plants that invest in thicker 
leaves may not see a corresponding increase in leaf longevity, possibly 
reducing the usefulness of this suite of traits for many communities. 
A high-dimensional approach may be most appropriate at regional and 
community scales, where trait diversity is shaped by a series of envi-
ronmental “filters,” each potentially acting on different traits (Lavorel 
& Garnier, 2002).

Certain questions may be best addressed using a high-dimensional 
approach. In a French Alpine grassland study, models including abi-
otic variables and just two of five measured plant traits best predicted 
ecosystem properties such as green biomass and soil carbon (Lavorel 
et al., 2011). However, because these different ecosystem properties 
invoked nonoverlapping sets of traits, understanding ecosystem mul-
tifunctionality would require more traits. Similarly, Kraft, Godoy, and 

F I G U R E   7 Correct assignment versus number of traits, by species and populations. The effect of the number of traits used on correct 
assignment of individuals to species, for all trait datasets (panels). For most species (a) and M. primuloides populations (b), species appear more 
distinct when more traits are considered. Variation among species (a) and among populations (b) in measurable species differences are of similar 
magnitude. Note that both (a) and (b) display how readily species were distinguished from other Mimulus species; only one M. primuloides was 
sampled in a given run, as part of a multispecies comparison. SE bars are shown. The combined constrained trait dataset used separate principal 
coordinates analyses in linear discriminant analysis (LDA) preprocessing such that one axis subsequently input into the LDA was constrained to 
be solely vegetative, and the other floral

(a)

(b)
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Levine (2015) found that no single functional trait explained observed 
patterns of plant coexistence; instead, stabilizing niche differences 
were only discernable when multiple functional, structural, and phe-
nological traits were considered, as plants may partition their envi-
ronments along numerous axes. Future research should continue to 
clarify when higher trait dimensionality is necessary.

High-dimensional trait sampling is compatible with the three major 
goals of functional ecology, distilled by McGill et al. (2006): elucidating 
mechanisms, achieving generality across systems, and moving toward 
predictive functional ecology. With a high-dimensional approach, post 
hoc analysis may help identify trait–environment relationships and 
candidate traits for subsequent experimentation. Although represen-
tative strategies have greatly advanced functional ecology by provid-
ing useful comparisons at the biogeographic scale, high-dimensional 
approaches need not preclude some degree of generality. Westoby 
and Wright (2006) have expanded the leaf–height–seed scheme 
with additional traits (e.g., root:shoot ratios, growth strategies), and 
reproductive traits could be incorporated. Lastly, Lavorel and Garnier 
(2002) proposed dividing traits into “response” and “effect” traits, to 
predict how community functioning will be impacted as traits respond 
to environmental change. Fitting additional traits into this framework 
is worthwhile, as environmental change may occur along numerous 
axes and we are evermore interested in multiple ecosystem functions.

4.2 | Quantifying phenotypic dissimilarity

Existing theory makes contrasting predictions regarding phenotypic 
dissimilarity of co-occurring species. Phenotypes may diverge to 
reduce niche overlap and competition (limiting similarity; MacArthur 
& Levins, 1967). Alternatively, fitness-related traits may converge, 
reducing competitive asymmetries and allowing coexistence (Chesson, 
2000). Trait convergence may also result from environmental “filters” 
limiting the range of permissible phenotypes (Keddy, 1992).

In our study, certain species were less well discriminated than 
others, depending on the trait dataset used. Similarly, Harmon et al. 
(2005), studying Anolis lizard radiations, noted that specialist species 
converged along certain morphological axes but diverged along others. 
Here, M. mephiticus and M. leptaleus were sampled at the same dry, 
disturbed site, and M. guttatus and M. moschatus co-occurred in a wet 
meadow. Perhaps due to this “harsher” shared environment, M. mephit-
icus and M. leptaleus had similar vegetative trait values (Figure 1). 
However, they had more distinctive floral traits (Figure 2), consistent 
with a macroecological study showing greater floral divergence in 
sympatric sister species in Mimulus (Grossenbacher & Whittall, 2011). 
We observed the opposite pattern of trait convergence in the M. 
guttatus–M. moschatus pair, perhaps due to less restrictive environ-
mental conditions but a limited pollinator pool. Indeed, other studies 
have demonstrated that these two contrasting processes may operate 
simultaneously and that their effects may vary across traits (Cornwell 
& Ackerly, 2009; Kraft et al., 2008).

Studies are increasingly characterizing intraspecific variation to bet-
ter understand ecological phenomena, from trophic cascades to com-
munity assembly to range shifts (Angert, Sheth, & Paul, 2011; Jung, 

Violle, Mondy, Hoffmann, & Muller, 2010; Post, Palkovacs, Schielke, & 
Dodson, 2008). In our study, different populations of a single species 
varied greatly in their phenotypic similarity with other species. This 
among-population variation poses a challenge for trait-based studies. 
At macroecological scales, it means that sampling multiple popula-
tions would most accurately depict overall similarity among species. 
At local scales, locally sampled trait data, rather than species means, 
should better represent the potentially unique confluence of genes 
and environment found at a site (Carmona, Rota, Azcárate, & Peco, 
2015). These consequences of intraspecific variation imply that the 
most appropriate traits for characterizing species’ phenotypes may 
differ among studies, even when the same species are sampled, and 
suggest that ideal trait combinations may vary across space.

4.3 | Future directions

Our use of readily measurable traits is both a strength and a limitation, 
pointing to interesting research avenues. It allowed us to sample a rel-
atively large number of traits across different plant organs and made 
possible our comparison of contrasting trait-sampling approaches. 
Our study demonstrated that using more and different types of traits 
better captured overall phenotypic dissimilarity; however, detailed 
study of trait–fitness relationships across heterogeneous environ-
ments would be needed to extend this approach to understanding 
niche differences. In other words, to determine whether the high-
dimensional phenotypic differences we observed among species 
reflect differentiation across numerous niche axes (and analogously, 
to determine whether phenotypically similar species are functionally 
redundant), studies clarifying the ecological significance of a broader 
suite of traits and trait combinations are required. Then, analyses such 
as ours could profitably explore weighting traits by their correlation 
with environmental gradients or fitness.

In conclusion, many ecological questions require understanding 
species’ phenotypic differences. However, despite the mounting num-
ber of trait-based studies, our capacity to make robust conclusions 
and cross-study comparisons has been plagued by a lack of consen-
sus when it comes to sampling. Faced with measuring many traits or 
investing time divining the best trait combinations, one might ask: 
“Why traits?” Although phylogenies can, in some cases, represent phe-
notypic and ecological differences among species (Flynn, Mirotchnick, 
Jain, Palmer, & Naeem, 2011; Gravel et al., 2012), phenotypic traits 
propose a mechanism. For example, traits determine whether and how 
two organisms might interact (Eklöf et al., 2013). Our study focuses 
attention on methodological decisions and sampling recommenda-
tions to propel this field forward.
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