
Biotic forcing: the push–pull of plant ranges

Natalie T. Jones . Benjamin Gilbert

Received: 19 September 2015 / Accepted: 11 April 2016 / Published online: 21 April 2016

� Springer Science+Business Media Dordrecht 2016

Abstract Scientists now recognize the importance of

species interactions for range shifts, but lack general

predictions about when and how species interactions

influence shifts. The ‘biotic envelopes’ of plant species

are defined by inter-specific interactions that influence

their range limits. Two prominent hypotheses describe

the biotic envelopes of plants by predicting that the

outcome of inter-specific interactions is determined by

climate, especially temperature and aridity. The first

hypothesis posits that species distributions are struc-

tured by a trade-off between competitive ability and

cold tolerance, so plant species exposed to warming

climates will have trailing range edges that are limited

by competitive interactions. The second hypothesis

proposes that the effects of competition and facilitation

from neighbouring plants change within a species

range, such that facilitative interactions dominate in

more environmentally stressful conditions; these facil-

itative interactions define leading range edges in a

warming climate. We incorporate these hypotheses

into a common framework that allows us to identify

when mismatches in dispersal rates will lead to range

expansion or contraction for a focal species. We

provide general predictions about the biotic envelopes

of plants, and how climate change will alter these

envelopes,while highlighting uncertainties in applying

these predictions beyond range edges.

Keywords Biotic interactions � Cold tolerance �
Geographic distribution � Plant � Range shift � Stress
gradient hypothesis

Introduction

Climate change is altering the latitudinal and eleva-

tional range limits of many species, often driving

poleward and upward range shifts (Parmesan 2006;

Chen et al. 2011). As a result, there has been renewed

interest in species ranges and their underlying deter-

minants (Gaston 2003; Louthan et al. 2015). Despite

the growing number of climate change studies,

forecasting species responses is challenging because

we lack quantitative examples of how physiological

tolerances and species interactions combine to struc-

ture current day communities across environmental

gradients (Ewanchuk and Bertness 2002; Sexton et al.

2009).

Biotic interactions and dispersal work in conjunc-

tion with abiotic conditions to structure species ranges

(Parmesan 2006; Hargreaves et al. 2014). For
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example, competition can limit species ranges through

both short-term ecological interactions and longer-

term evolutionary dynamics (MacArthur 1972; Dia-

mond 1975; Price and Kirkpatrick 2009). Even so, the

abiotic environment, especially temperature and pre-

cipitation, is known as determinants of species distri-

butions (Cain 1944). These factors do not function

independently; it is well understood that the outcomes

of competitive interactions depend on the environ-

mental arena in which species interact (Taniguchi and

Nakano 2000; Schemske et al. 2009).

Ecological theory posits that local abiotic condi-

tions influence not only the outcome of competitive

interactions, but also the type of species interactions

that occur in a community (Bertness and Callaway

1994; Schemske et al. 2009). To date, studies of range

limits have focused almost exclusively on antagonistic

interactions: competition, predation and herbivory

(Brown et al. 1996; Sexton et al. 2009). Despite this

preoccupation with antagonistic interactions, positive

interactions can be important for diversity patterns

(Hacker and Gaines 1997), range delimitation (Call-

away et al. 2002) and even facilitate expansion of

range edges (Spasojevic et al. 2014; Cavieres et al.

2014; Grassein et al. 2014). For plants in particular,

interactions among neighbours have often been shown

to shift from competitive to facilitative as abiotic

gradients change from relatively benign to stressful,

suggesting facilitative interactions may be important

for many plant species at more stressful range edges

(Fig. 1) (Callaway and Walker 1997; Brooker et al.

2008; Richardson et al. 2012).

The changing types and importance of biotic

interactions within a species range raises the possibil-

ity that the nature of the ‘‘biotic envelope’’, or the

types and strengths of interactions that influence the

range limits of a species, may be general to many

species. This type of generalization requires that the

net effect of biotic interactions on the ranges of plants

across an abiotic environmental gradient (here we

consider latitude and elevation) be broken down into

its constituent parts. We define ‘‘biotic pushes’’ as the

negative biotic interactions—specifically competi-

tion—that limit species distributions (Fig. 1). These

biotic pushes decrease the realized range of species by

‘pushing’ species out of habitat that would be

suitable in the absence of the interactions. In contrast,

‘‘biotic pulls’’ are positive biotic interactions—specif-

ically intra-guild facilitation—that create the upper

bounds of species distributions by ‘pulling’ plant

species into habitats that would be unsuitable in the

absence of neighbours (Fig. 1). The combined effects

of biotic pushes and pulls on a species range are

analogous to the reduction and expansion of the

fundamental niche that result from biotic interactions,

forming the realized niche (Bruno et al. 2003).

Despite widespread acknowledgement of the

importance of biotic interactions for species ranges

(Davis et al. 1998; Urban et al. 2012; Svenning et al.

2014), there has been a lag in experimental work

applying these ideas to range shifts. For example, a

recent meta-analysis provided evidence for the role of

biotic interactions in structuring plant ranges, with

negative interactions limiting species at lower range

edges more than at upper range edges (Hargreaves

et al. 2014). However, even this meta-analysis lacked

sufficient studies to formally test the impact of biotic

interactions at leading and trailing edges. Our own

literature search of the most recent published literature

on plant range limits revealed similar patterns

(Fig. S1; Table A1). Of the sixteen manipulative

experiments investigating plant ranges that were

published since January 2013, four considered plant–

plant interactions and only one of these transplanted

species beyond both leading and trailing range edges.

Despite the lack of experimental tests, almost every

paper referred to the importance of biotic interactions

in structuring ranges. Overall, this suggests that a

general predictive framework could help motivate

experimental work to test how biotic interactions at

leading and trailing edges mediate range shifts.

Our objective is to explore how plant–plant inter-

actions influence range shifts. We generalize plant

range shift predictions by considering hypotheses

concerned with the nature of species interactions

across environmental gradients. The first, the Cold-

Tolerance Competition Hypothesis (CTCH), posits

that species’ are limited by competitive interactions at

the warmer range limit and intolerance to stressful

cold conditions at the cooler range limit (Darwin 1859;

Dobzhansky 1950; MacArthur 1972; Pianka 1966).

The second is the stress gradient hypothesis (SGH),

which states that the intensity of facilitative interac-

tions increases with environmental stress (Bertness

and Callaway 1994). Both relate specifically to the

physiological tolerance limits of plants to temperature,

and how temperature shapes the types and strengths of

species interactions. Together, these hypotheses
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generate the prediction that species interactions may

not only exclude populations at the trailing edge of a

species range, but also facilitate populations at the

leading edge when ranges are structured by temper-

ature gradients. In addition, the general predictions of

the SGH suggests that it may apply to a broader range

of climate change scenarios, such as areas in which

range shifts are driven by increasing drought or other

physical or abiotic stressors.

In this article, we present a testable conceptual

model designed to stimulate experimental work on

species interactions and plant range shifts. Below, we

review evidence for the hypotheses that underlie the

model and present a framework for empirical tests to

characterize how biotic envelopes influence range

shifts. We argue that differences in the dominant types

of plant–plant interactions across environmental gra-

dients will be influenced by climate change and affect

range dynamics. Our framework deals specifically

with plant–plant interactions and how these may be

generalized across species ranges, but we also discuss

how other types of interactions, such as plant-soil

microbe interactions, can be incorporated into this

framework.

Interactions across environmental gradients

Trade-offs in competitive ability and cold

tolerance

Trade-offs in competitive ability and cold tolerance

are often invoked to explain the distributional limits of

species (Menge and Sutherland 1976; Case et al. 2005;

Normand et al. 2009). Darwin was the first to suggest

that the intensity of competitive interactions could be

structuring communities to differing degrees across a

latitudinal gradient, with latitude acting as a surrogate

for temperature among other factors (Darwin 1859).

Dobzhansky further advanced the CTCH by

Fig. 1 Schematic depicting the relative impact of species

interactions and abiotic stress (e.g. cold temperatures) on

species distributions. a The southern portion of a species

distribution is constrained by the competitive environment. This

biotic ‘‘push’’ causes a negative growth rate, pushing the

population towards local extinction. With climate change this

could ultimately drive a contraction of the trailing edge of a

distribution due to competitive interactions. The northern

portion of a species distribution is governed by a biotic ‘‘pull’’.

Here, facilitation reduces abiotic stress experienced by bene-

factors, expanding the northern distributional limit. b A

hypothetical species distribution across a latitudinal or eleva-

tional gradient with neighbours. Here, the species can persist

despite a negative growth rate in the absence of neighbours (blue

hashed area). c The same hypothetical species as in b but with

neighbours removed. The lower or southern limit of the

distribution expands when competitive interactions are removed

(green hashed area), whereas the upper (northern) limit of the

distribution shrinks. The net effect of neighbour removal is a

downward (southward) shift in the distribution of the species.

(Color figure online)
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developing conceptual models of how harsh environ-

ments selected for species that could tolerate broad

ranges of abiotic conditions but were weak competi-

tors (Dobzhansky 1950; Pianka 1966). More recently,

Grime presented this trade-off with an additional axis,

disturbance, to explain the ecological distributions of

species (the CSR model of plant strategies; Grime

1974, 1977). These arguments, in conjunction with

coevolutionary models, provide a general mechanism

that can account for greater diversity and greater

competitive ability in warmer climates (Shemske

2009).

There are potentially many physiological con-

straints that could cause a trade-off between compet-

itive ability in non-stressful environments and

tolerance to stressful environments. For instance, tree

species have been shown to have a trade-off between

elevated freezing tolerance and growth rates, which

has been interpreted as support for the CTCH (Loehle

1998; Koehler et al. 2011). Annual plants have shown

similar trade-offs along water gradients, where com-

petitive species dominate when rainfall is frequent, but

are replaced by drought-tolerant species when rainfall

is sparse (Novoplansky and Goldberg 2001). Simi-

larly, annual plant species that experience variable

rainfall among years often develop seed banks that

ensure long-term persistence even when some years

result in reproductive failure. This bet-hedging strat-

egy lowers the mean and variance in population

growth rates among years (Cohen 1968; Ellner 1985;

Venable 2007). Importantly, while seed banks ensure

survival in fluctuating, harsh environments, they

reduce population growth rates in more stable envi-

ronments, generating a trade-off between tolerance

and competitive ability. Together these trade-offs

support the role for physiological trade-offs between

stress tolerance and competitive ability that underlie

both the SGH and CTCH.

The CTCH is a compelling hypothesis for range

distributions because it provides predictions that can

be tested both within and among species. In the CTHC,

‘cold tolerance’ is interpreted broadly as any strategy

that allows a species to persist in cold environments,

from physiological adaptations to freezing, to resis-

tance to breakage by snow loading, to an herbaceous

perennial strategy that avoids aboveground exposure

in winter months. When considering multiple species,

the trade-off between cold tolerance and competitive

ability could map directly to species range

distributions (Fig. 2a), with these different factors

quantified using population growth rates with and

without competitors. Within species, the CTHC pre-

dicts that species should be limited at lower latitudes

by competitive interactions with neighbours (Fig. 3;

antagonistic interactions), and at higher latitudes by

abiotic stresses associated with the cold climate, such

as a short growing season and frost damage.

Evidence for the CTHC is mixed, in part because it

is rarely fully evaluated in empirical studies. Compe-

tition has been shown to form range limits in a number

of studies (Case et al. 2005), but comparisons of the

importance of abiotic and biotic factors at northern and

southern limits (as proposed by the CTCH) are lacking

(Sexton et al. 2009). For example, consistent with a

trade-off, studies testing for an association between

temperature and occurrence across an environmental

Fig. 2 a The cold-tolerance competition hypothesis (CTCH)

can be tested for large numbers of species by evaluating a trade-

off between cold tolerance (fitness in the absence of competi-

tors) and competitive ability (fitness in the presence of

competitors). b species’ distributions, here drawn as unimodal

distributions for simplicity, reflect this trade-off with lower

range limits defined by low competitive ability (i.e. species’ are

displaced because population growth rates are negative with

competitors but positive in the absence of competition). Species

in a are drawn in the same horizontal position in b, with species
at either end marked with specific colours for clarity. (Color

figure online)
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gradient have found that low temperatures and high

snow pack often limit distributions at the northern and

high elevation range limits (MacDonald et al. 2000).

However, they normally do not explicitly test how

local factors such as competition impact distributions,

therefore failing to appropriately test for a trade-off

(Lavergne et al. 2010; Ettinger et al. 2011; Hargreaves

et al. 2014).

Despite the lack of formal tests in the literature,

there are several examples of trade-offs in response to

environmental conditions that inform the generality of

the CTCH. For example, Ettinger and colleagues

studied adult trees to test the biotic and abiotic drivers

of range limits across an elevation gradient on Mt.

Rainier, U.S.A. (Ettinger et al. 2011; Ettinger and

HilleRisLambers 2013). The authors found some

evidence that was consistent with predictions of the

CTCH, but results varied among species. For instance,

high elevation species were strongly limited by

climate at the upper edge of their distribution but not

at the lower edge. However, this pattern did not hold

for lower elevation species (Ettinger et al. 2011).

Similarly, of three species tested for the effects of

competition, only one showed evidence that compe-

tition was more limiting at the lower edge (Ettinger

and HilleRisLambers 2013). The approach taken by

Ettinger and colleagues, which is similar to a single

species approach (Fig. 3), can be expanded to examine

competitive abilities among species as well as cold

tolerance. Indeed, as such studies increase, they may

present the opportunity to compare cold tolerance and

competitive ability among large numbers of species,

thus offering a robust test of the trade-off that

underlies the CTCH (Fig. 2a).

Positive interactions and range shifts

Facilitative interactions are rarely invoked to explain

range sizes (Brooker et al. 2007; Le Bagousse-Pinguet

et al. 2014), yet it is well understood that plants in

some communities facilitate neighbours by amelio-

rating the local environment (Brooker et al. 2008). The

SGH proposes that the net effects of facilitative and

competitive interactions vary inversely across abiotic

stress gradients, with facilitation increasing in high

stress conditions (Bertness and Callaway 1994).

The first global test of the SGH provided some of

the most compelling support for a shift from negative

to positive interactions as elevation increased, sup-

porting the hypothesis that cold-related environmental

Fig. 3 Predictions for the response of plant populations to the

presence or absence of a neighbour across a stress gradient, here

we consider a latitudinal or elevational gradient. We consider

‘range center’ to measure viable populations between the range

edges. Plant communities originate from populations across

their latitudinal or elevational range. The focal species is grown

at a common density in the presence or absence of a neighbour

across their range. For each range location, the predictions are as

follows: (a) beyond the trailing edge, the focal species has a

positive growth rate only in the absence of neighbours, (b, c) at

the trailing edge and range centre, the focal species has a greater,

positive growth rate in the absence of neighbours, (d) at the

leading edge the growth rate becomes negative in the absence of

a neighbour, and (e) beyond the leading edge, in the absence of

neighbours, growth rate decreases further
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stress increases facilitation (Callaway et al. 2002).

Using neighbour removal experiments, the authors

showed that focal species had higher biomass, fecun-

dity and survival at high elevations when neighbours

were present but that neighbours generally depressed

performance at low elevations. Although evidence for

the SGH across elevational gradients is not ubiquitous

(e.g. de Bello et al. 2011), meta-analyses show that

positive interactions increase on average at higher

elevations and latitudes (Kikvidze et al. 2011; He et al.

2013). For species at or close to their range limits,

these trends suggest that facilitative interactions could

expand range limits in stressful conditions (e.g. higher

latitude or higher elevation) beyond those that would

occur in the absence of species interactions.

In semi-arid regions, water availability often

determines plant ranges, and climate change is

predicted to alter this stress gradient in many parts of

the world (IPCC 2013). In these systems, facilitative

interactions often come in the form of shading, where

shrubs ameliorate hot conditions for seedlings or

herbaceous plants by reducing rates of evaporative

water loss and increasing soil moisture levels (Gómez-

Aparicio et al. 2004). For example, the leading edge of

Scots pine occurs in northern Europe where low

temperatures determine northern range limits (James

et al. 1994). However, the southern distribution

extends into the Mediterranean basin in south-eastern

Spain where relic populations persist on mountain

tops—in these environments, shrubs facilitate seed-

ling survival and as a result, recruitment occurs where

shrubs are present (Castro et al. 2004). Despite many

such examples, facilitative interactions need not

increase at lower rainfall in semi-arid environments

(Maestre and Cortina 2004; Maestre et al. 2005; Lortie

and Callaway 2006), in part because some species

respond to gradients other than moisture (Lortie and

Callaway 2006; He et al. 2013). The results of work in

semi-arid environments suggest that the importance of

facilitation depends on the degree to which species are

limited by the abiotic gradient studied, but overall

shows an increase in facilitation with stress (Lortie and

Callaway 2006; He et al. 2013).

Although the SGH has been tested by ecologists in

many habitats, it has only recently been recognized that

facilitative interactions may be important for range

shifts (He et al. 2013; Michalet et al. 2014; Spasojevic

et al. 2014). Importantly, tests of the SGH provide

evidence for increased competitive interactions in

more favourable environments as well as evidence for

facilitative dynamics in stressful environments (He

et al. 2013). This is because experiments testing the

SGH are designed to isolate the net effect of plant

interactions across a stress gradient. Indeed, the SGH

approach of quantifying fitness with and without

neighbours across a gradient is similar to that required

for testing the CTHC when abiotic stress is driven by a

colder climate at one range edge (Fig. 3b–d). Although

incorporating facilitation into range shift hypotheses

may appear to make an already-complex problem

intractable, the generality of the SGH and thus the

predictability of competitive and facilitative dynamics

with environmental change promise to simplify pre-

dictions (see How biotic interactions affect species

range shifts below). Recent consideration of facilita-

tive interactions for range limits (Brooker 2006;

Spasojevic et al. 2014) promises to follow a more

general shift in the ecological literature that incorpo-

rates positive interactions into existing ecological

paradigms (Bruno et al. 2003).

How biotic interactions affect species range shifts

Testing the generality of biotic pushes and pulls

across species ranges

The incorporation of biotic interactions into range

shift hypotheses has been slow, in part because the

strength and nature of species interactions can vary by

location and species. Our conceptual framework

generalizes the biotic envelope that encompasses

species’ ranges in terms of the strength of biotic

pushes and pulls along latitudinal or elevational

gradients (Fig. 1a). Although other interactions

clearly impact species distributions (see ‘‘Expanding

the biotic envelope’’ below), we propose this frame-

work as a method to test long-standing ecological

hypotheses and generate predictions for species range

shifts.

When cold-associated abiotic stress limits species

ranges, negative species interactions are hypothesized

to depress the population growth rate of the focal

species at low latitudes, and the strength of this

negative interaction increases as this stress decreases.

This elevated competitive environment creates the

trailing edge of the focal species’ range (Fig. 1b).

Importantly, because the competitive effect creates
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negative growth rates at the trailing edge, experimental

removal of neighbours would allow the establishment

and persistence of the focal species beyond its lower

range limit (Figs. 1c, 3a, b). Although this hypothesis

follows from the CTCH, it has not been tested

sufficiently (Hargreaves et al. 2014). In contrast, at

the high latitude edge of the range, plants experience

relatively high abiotic stress that is ameliorated by

facilitative interactions (Fig. 1b). Here, neighbours

increase the survival and growth of the focal species in

marginal habitats, as has been shown in several studies

of the SGH (He et al. 2013). This effectively pulls the

distribution to higher latitudes or elevation, meaning

that removing neighbourswould drive local extirpation

of the focal species at its current upper range limit

(Figs. 1c, 3d, e).

The experimental set-up outlined in Fig. 3 can also

be used to clarify how the relative strength of fitness

differences and stabilizing differences (sensu Chesson

2000) shift across a species range. At the coarsest

level, growing a species at low abundance in the

presence of neighbours determines whether a species

can establish when locally rare; this is the definition of

the invasion criteria for the focal species and has been

used to predict persistence of species in many types of

ecological communities (reviewed in Siepielski and

McPeek 2010). The invasion criteria is the basis for

Chesson’s framework for coexistence, and this mea-

sure therefore captures the net effect of fitness and

stabilizing differences from the perspective of the

focal species (Chesson 2000; Levine and Hille Ris

Lambers 2009). Importantly, unless the focal species

experiences an allee effect, which can generate

priority effects, the invasion criteria also predict

whether a species could persist at even higher densities

(Mordecai 2011). In addition, a species’ maximum

rate of increase is often assessed by growing a focal

species in the absence of competition (Levine and

Hille Ris Lambers 2009). This measure is correlated

with a species absolute fitness (Godoy and Levine

2014). Finally, comparing the focal species growth

rate in the presence and absence of competition across

the range allows the researcher to quantify the impact

of intra-specific competition across the range (Alexan-

der et al. 2015), which is another component of fitness

(Godoy and Levine 2014). In other words, the

experimental design proposed in Fig. 3 is well suited

to understanding whether the invasion criteria is met

for a focal species, but does not provide an estimate of

the invasion criteria for the extant community if the

focal species were to invade.

Geographic variation in the nature of species

interactions can be implicitly incorporated into our

conceptual model (Fig. 1) by recognizing that most

range edges correspond to changes in the abiotic

environment (Hargreaves et al. 2014). As a result, the

abiotic gradient can be expanded to include other

forms of stress, such as drought, so long as there is a

species-level trade-off between stress tolerance and

competitive ability that is analogous to the CTCH

trade-off (Fig. 3). For example, research on annual

plant species in the Sonoran desert has shown a trade-

off among species in water use efficiency and relative

growth rate that is consistent with this hypothesis

(Huxman et al. 2008; Angert et al. 2009). The

convergence of water use efficiency rates across

biomes suggests that this trade-off may also be

conserved across biomes (Huxman et al. 2004), and

thus be applied as generally as the CTHC. Because

precipitation and temperature singly or jointly limit

vegetative growth (Schultz and Halpert 1993), incor-

porating these two factors into a common framework

for range limits could allow an assessment of general

trends. Nonetheless, the manner in which these

limiting abiotic factors covary and interact needs to

be considered for the correct implementation of this

framework, and large-scale analyses of vegetation

dynamics provide a starting point for these consider-

ations (Schultz and Halpert 1993; Potter and Brooks

1998).

Determining how climate change modifies

the strength of the biotic pushes and pulls

When abiotic conditions change across a species’

range, the importance of facilitative and competitive

interactions on a population’s growth rates at each

edge of the range are also expected to change. This

process could shift the entire biotic envelope if any

increase in facilitative dynamics at the leading range

edge is matched by an increase in competitive impacts

at the trailing edge. Alternately, the changes to the

relative importance of facilitative and competitive

interactions may not be symmetric, causing either

facilitation or competition to dominate the process of

range shifts through subsequent expansion or contrac-

tion. For example, if competition in the trailing edge

has a larger negative impact than facilitation or
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relaxed competition in the leading edge, we would

observe a shift towards competitive exclusion that

causes the range size to contract across the biotic

envelope (Alexander et al. 2015).

The direct effects of temperature change may well

alter biotic envelopes through changes in temperature

variation and heterogeneous changes in mean temper-

ature around the world. For example, variation in

temperature is predicted to increase in many parts of

the world, and this variation is often more stressful to

species even if they experience an identical mean

temperature (Vasseur et al. 2014). As a result, the

proportion of the biotic envelope that is dominated by

biotic pulls may increase because of increased vari-

ation in temperature. Spatial patterns of temperature

change may also systematically alter the biotic

envelope, as mean increases in temperature are

amplified in polar regions (IPCC 2013). In this case,

species biotic envelopes are expected to experience

greater change towards negative interactions at high

latitudes relative to low latitudes, thus decreasing the

overall importance of biotic pulls across the range.

Climate change driven shrub expansion in the arctic

tundra is an example of dynamics that are consistent

with this phenomenon (Elmendorf et al. 2012b). The

impact of shrubs on vegetation can vary by species and

life form (Walker et al. 2006; Pajunen et al. 2011). For

shade intolerant species, shrubs alter competitive

dynamics by increasing competition for light. The

results of a recent global analysis provide support for

the increased role of competitive interactions in shrub

understories, with superior competitors for light

increasing in abundance over the last 30 years

(Elmendorf et al. 2012a). The concurrent reduction

in abundance of many shade intolerant and more

northerly species (mainly lichens and mosses) sug-

gests that the biotic envelopes of this functional group

are shifting to greater competition. Whether there are

also shifts in facilitation with shrub expansion for

more southerly species is yet to be determined in these

systems.

The second process that affects the biotic envelopes

of species is a difference in the rate of movement of

interacting species (e.g. Urban et al. 2012, 2013). In

the simplest case, interacting species will experience

equal rates of movement, and the strength of biotic

pushes and pulls will reflect abiotic constraints unless

the strength of interactions within the recipient

community shift (e.g. Alexander et al. 2015).

However, asymmetries in dispersal rates can change

the biotic envelope, potentially creating temporal lags

in which the negative effects of biotic pushes are

relaxed for a period, increasing range size or biotic

pulls disappear, causing range sizes to collapse. These

asymmetries depend on the relative movement rates of

a focal species, its competitors and facilitators, and the

velocity of climate change across the species range

(Brooker et al. 2007; Loarie et al. 2009; Alexander

et al. 2015). As an example, imagine a mid-latitude

plant species that is unable to track the velocity of

climate change and has lower dispersal ability than its

lower-latitude competitors. As higher temperatures

push communities’ poleward, competitors increas-

ingly compress the range of the focal species through

competitive interactions (Alexander et al. 2015). In

extreme cases, this effect can drive the extinction of

the focal species by encompassing its entire range in

the biotic push zone (Urban et al. 2012). The same

phenomenon can occur at the poleward range limit,

but in this case, it would require the facilitating species

to have a small initial range size and lower dispersal

(Brooker et al. 2007).

Although in many cases, climate change will push

species distributions poleward, it is important to

recognize that in some situations, climate change is

expected to move species away from areas that were

previously dominated by biotic pulls. As an example,

many arid regions are expected to become drier with

climate change (Schlesinger et al. 1990; Cook et al.

2004; IPCC 2013). Stress amelioration via facilitation

is important for species persistence in these ecosys-

tems and could buffer the impact of climate change in

these regions (Bellot et al. 2001; Brooker et al. 2008).

In this scenario, the trailing edge, and its maintenance,

will depend on the rate of movement of facilitating

species. If the presence of facilitator species’ such as

nurse plants maintain positive growth rates, the rate of

range contraction at the trailing edge will be damp-

ened (Schöb et al. 2013; Michalet et al. 2014; Cavieres

et al. 2014). As a result, the dispersal rates of the

facilitating species in these regions will determine

how ranges contract at the trailing edge.

Expanding the biotic envelope

One of the greatest challenges for ecologists is to

determine the structure of the biotic envelope. The
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framework we have presented is powerful for plants

because of its generality. However, the focus on plant–

plant interactions that forms the SGH and CTHC does

not account for other types of species interactions that

also influence the biotic envelope (e.g. Bruno et al.

2003; Weber et al. 2005; Memmott et al. 2007; Nathan

et al. 2008). Although the effects of interactions with

other groups of species have not been generalized

across environmental or latitudinal gradients, there are

a number of these interactions that appear important to

species ranges (Gaston 2003; Case et al. 2005; Holt

and Barfield 2009). We explore three of the prominent

interactions that plants experience: interactions with

animal dispersers, local microbial partners and herbi-

vores. Plant-pollinator interactions, which are also

important determinants of the biotic envelope for

many plant species, have been fully reviewed else-

where (Memmott et al. 2007; Hegland et al. 2009;

Burkle et al. 2013).

The facilitation of dispersal

Seed dispersal by animals is an underappreciated

aspect of plant ranges (Urban et al. 2013), despite its

importance for population dynamics (Nathan et al.

2008). In many cases, animal dispersers carry seeds

very short distances (Howe and Smallwood 1982).

However, rare long-distance dispersal events by

animals are important and have often been invoked

to explain rapid expansion of tree ranges following

glacial retreat (Clark et al. 1998). In addition, long-

ranging species that only occasionally ingest a focal

plant’s seeds may generate infrequent long-distance

dispersal events (Fragoso 1997; Vellend et al. 2003).

For example, deer occasionally dispersed trillium

seeds more than three kilometres, despite some seeds

being destroyed in the deer gut (Vellend et al. 2006).

These cases of long-distance dispersal provide a

solution to Reid’s paradox, the asymmetry between

post-glacial ranges of temperate plants and their

limited mean dispersal distances (Reid 1899; Clark

1998), and suggest that the ability of plants to track

climatic conditions will be mediated by interactions

with their dispersers.

When plant and animal species respond similarly to

climate change, the fidelity of animals to the plants

they disperse could lead to differences in plant

colonization rates. On one hand, generalist feeders

that forage broadly may have a reduced impact on

plant range dynamics, at least in the short-term, for

two reasons (Angert et al. 2011). First, each species

makes up a small proportion of the animal’s overall

diet, and the likelihood of dispersal may therefore be

low. Second, even when animals disperse beyond the

range of their plant food source on a shorter timescale,

the timing of foraging within the plant’s extant range

must coincide with the production of fruit, which is

unlikely unless the animal is actively targeting the

focal plant. In contrast, specialist animal dispersers

could enhance range shifts (Cunze et al. 2013),

effectively acting as a biotic pull by accelerating

range expansion. For example, the passenger pigeon is

hypothesized to have facilitated range expansion in a

number of eastern North American nut trees following

glacial retreat, and these nuts provided an important

part of their autumn diet (Webb 1986). To date, the

implications of animal dispersal on the range shifts of

plants remain unclear but it is amenable to compar-

ative tests, and its potential importance raises ques-

tions about biogeographic patterns of dispersal modes.

Herbivory and range dynamics

Recent research has recognized that herbivory should

be integrated into range shift studies (Holt and Barfield

2009). Herbivores directly impact plant performance

(Crawley 1989; Maron and Crone 2006) and some-

times even delimit plant range edges (Scheidel and

Bruelheide 1999; Lavergne et al. 2005). For example,

Bruelheide and Scheidel (1999) transplanted Arnica

montana populations below their altitudinal range

limit in the Harz mountains of Germany. The authors

found that mollusc herbivory resulted in up to 70 %

leaf damage compared with 8 % at higher elevations,

where populations naturally persist. In a separate

study, the same group conducted palatability trials

comparing the preferences of three slug species to

twenty co-occurring plants. They determined that A.

montana was among the most preferred by molluscs

(Scheidel and Bruelheide 1999). Together, these

studies suggest that range limits can be driven by

trophic interactions and could therefore modify the

dynamics of range shifts.

Herbivore pressure has long been hypothesized to

increase towards the equator (Dobzhansky 1950;

Schemske et al. 2009), suggesting that it could be

systematically incorporated into range shift predic-

tions. However, a recent meta-analysis shows no
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support for this hypothesis, with rates of natural

herbivory being no different on average across latitude

(Moles et al. 2011). Studies included in this meta-

analysis and other studies have shown clear latitudinal

trends in herbivore pressure for specific species, but

they appear to be idiosyncratic and suggest that

herbivory can impact both the leading and trailing

edges of plant distributions (Dyer and Coley 2002;

Salazar and Marquis 2012).

Plant-soil feedbacks and range expansion

Plant-soil feedback experiments have demonstrated

the importance of soil microbes for community

membership (Weber et al. 2005; Kardol et al. 2006;

Fukami and Nakajima 2013), dominance relationships

(Klironomos 2002) and invasion (Pringle et al. 2009).

The role of soil biota in mediating range shifts is less

understood (Van Grunsven et al. 2007). Recently, the

enemy release framework, where escape from soil

pathogens allows non-native species to establish in

novel habitats, has been extended to temperature-

induced range shifts (Van Grunsven et al. 2010).

Because plants disperse faster than the soil microor-

ganisms they are associated with, range expansion

could allow individuals at the leading edge to enjoy a

period of enemy release.

In the first study to apply these concepts to native

species shifting their ranges poleward, Van Grunsven

and colleagues manipulated the soil biota of a range

expanding species, Tragopogon dubius and its widely

spread congener T. pratensis, across their latitudinal

ranges in Europe (Van Grunsven et al. 2010). They

found a reduction in the negative plant-soil feedback

for T. dubius in its newly colonized range, whereas the

widespread T. pratensis experienced negative feed-

backs across its range. The specific mechanism

remains unknown as both a reduction in plant specific

pathogens (Klironomos 2002) or an increase in the

effectiveness of arbuscular mycorrhizal fungi (Bever

et al. 1997) could cause the observed pattern. How-

ever, this study stresses the importance of below-

ground interactions for the expanding ranges of plants

and represents a biotic pull that can operate in concert

with climate change. Just as slow dispersal of

pathogenic soil microorganisms can aid range expan-

sion, specialized plant-soil feedbacks that increase the

fitness of a plant can be left behind the range front of a

shifting species (Levine et al. 2006). In these cases, the

biotic pull that would be exerted by the mutualist are

absent, which can slow the expansion of the focal

species range (Weber et al. 2005).

Conclusion

Incorporating species interactions into tests of range

limits and range shifts is important for understanding

the mechanisms that maintain species distributions

and thus how climate change will modify ranges. Our

framework attempts to address this by merging the

impact of the abiotic environment on species distri-

butions with the nature of species interactions across

environmental gradients to predict how climate

change will modify range boundaries. There are a

variety of ways in which species interactions and

responses to the abiotic environment can combine to

alter population dynamics, population persistence and

species ranges (Gilman et al. 2010; Gilbert and

O’Connor 2013; HilleRisLambers et al. 2013; Jones

et al. 2013; Gilbert et al. 2014). We propose that the

relative strengths of pushes and pulls that make up the

biotic envelope change predictably across plant

species ranges in many ecosystems, and explain how

this hypothesis is both general and testable.

Our framework can also be expanded to generate

new hypotheses about the consequences of climate

change on range shifts when there is specific infor-

mation about how the climate is changing. For

example, the strength of biotic pushes at the trailing

edge are predicted to increase at higher temperatures,

elevating the risk of extinction through competition at

the trailing edge of many species ranges. Although

careful experimental manipulations are required to test

these hypotheses, recent studies have proposed excit-

ing new approaches in plant ecology (e.g. Alexander

et al. 2015). By reframing existing hypotheses to

explicitly link changes to species distributions and the

nature of species interactions, we will be better

positioned to isolate the proximate causes of extant

range limits and more accurately predict range shifts.
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