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Appendix 2 - Supporting Information 

 

Pairwise Sørensen distance versus Classical β:  

Pairwise Sørensen distance (DSørensen) is defined by the number of species jointly present in two 

samples (J) relative to the total number of species (S) in each sample (Legendre & Legendre, 

2012): DSørensen = 1- 2J/(S1+S2). As shown by Tuomisto (2010), classical β measures can be 

related to DSørensen; when there are two, equally-weighted samples, 𝐷𝑆ø𝑟𝑒𝑛𝑠𝑒𝑛 =
𝛾2−𝛼̅2

 𝛼̅2
, where γ2 is 

the total number of species in the two samples and 𝛼̅2 is the mean number of species per sample. 

Importantly, this metric is related to classical β partitioning for any two sites (β2) and the scaling 

exponent (z) of the Arrhenius SAR equation, when area is scaled relative to the size of sample 

plots so that a single plot is considered an area of one: 

𝛽2 =
𝐷𝑆ø𝑟𝑒𝑛𝑠𝑒𝑛

1+𝐷𝑆ø𝑟𝑒𝑛𝑠𝑒𝑛
 (S1), 

𝑧 = 𝐿𝑜𝑔2(1 + 𝐷𝑆ø𝑟𝑒𝑛𝑠𝑒𝑛)  (S2) 

In Equation S2 above, we see the link between Sørensen distance and the scaling exponent of a 

species-area relationship, both of which are used in ecological studies to measure species 

turnover (Anderson et al., 2011). However, we see that when regional diversity is well-modeled 

by the Arrhenius equation, Sørensen distance allows us to determine the scale-dependence of 

classic β (Eqn. S2). Indeed, using the same scaling with the Arrhenius equation as was used 

above, we find that classical β partitioning for a given area is:  

 𝛽𝐴𝑟𝑒𝑎 = 1 −  𝐴𝑟𝑒𝑎−𝐿𝑜𝑔2(1+𝐷̅𝑆ø𝑟𝑒𝑛𝑠𝑒𝑛)  (S3) 

where 𝐷̅𝑆ø𝑟𝑒𝑛𝑠𝑒𝑛 is the mean Sørensen distance among sample pairs. When the exact shape of the 

SAR is unknown, Eqns. S2 and S3 provide a qualitative prediction for the scaling of classical β 

with area, but can only be considered perfectly accurate when two plots are considered (Eqn. 

S1).  

Pairwise Jaccard distance versus classical β 

The following equations outline the relationship of pairwise Jaccard distance to β partitioning for 

any two sites, (β2) and the scaling exponent (z) of the Arrhenius equation (S=cAz) when area is 

scaled relative to the size of sample plots. 

Jaccard distance for two sites is defined as (Legendre and Legendre, 2012): 

𝐷𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =  1 −
𝑠ℎ𝑎𝑟𝑒𝑑

𝛾2
=

2(𝛾2−𝛼̅2)

𝛾2
  (S4) 



2 
 

We can organize eqn. S4 to define classical β for two sites: 

𝛽2 =
𝛾2−𝛼̅2

𝛾2
=  

𝐷𝐽𝑎𝑐𝑐𝑎𝑟𝑑

2
     (S5) 

Similarly, by solving the Arrhenius equation for two sites, we see that: 

𝛾2 =  𝛼̅2𝑧 ,  𝐷𝐽𝑎𝑐𝑐𝑎𝑟𝑑 = 2 −
2𝛼̅

𝛼̅2𝑧    (S6) 

And, 

𝑧 = 𝑙𝑜𝑔2 (
2

2−𝐷𝐽𝑎𝑐𝑐𝑎𝑟𝑑
)    (S7) 

A similar approach was used to solve for equations S2 and S3 above. 

 

 

Mathematical predictions for the scale-dependence of multisite distance: the 

Diserud-Odegaard method  

 

Although a mathematical expectation cannot be derived for Basselga’s multisite distance, we can 

use the complement of the Diserud-Odegaard (2007) similarity metric to examine its scale 

(in)dependence. As noted by Chao et al. (2012), this metric is standardized by the number of 

sites sampled. The distance measure, which we term DDO, is (Harrison et al. 1992): 

𝐷𝐷𝑂 =
𝛾

𝛼̅⁄ −1

𝑁−1
  (S8) 

Using the same approach as above, we set the area equal to the number of plots sampled (N) and 

assume that γ is well-modeled by the Arrhenius equation. With these assumptions,  

 𝐷𝐷𝑂 =
𝑁𝑧−1

𝑁−1
    (S9) 

As N gets large, DDO is approximately Nz-1 – 1. In other words, the non-linear scaling of γ that is 

common to species-area relationships creates a scale-dependence in DDO that is not corrected by 

the denominator. We see this scale-dependence in tests of this method (Fig. S15). 
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Generating a scale-dependent measure of differences in classical β 

A scale-dependent measure of differences in classical β should be possible for comparing regions 

with well-characterized species-area curves. For example, species-area relationships of two 

regions are well modeled by power functions, the area dependence of region 1 will be: 

𝛽1 ≅ 1 −
𝛼1

𝛼1𝐴𝑧1
  (S10) 

Where area is scaled to the size of sample plots so that α1 is the mean species richness in a single 

plot and z1 is the scaling exponent. A scale-dependent measure of classical β could then be 

defined as: 

𝛽1
𝛽2

⁄ =
𝐴𝑧1+𝑧2−𝐴𝑧2

𝐴𝑧1+𝑧2−𝐴𝑧1
  (S11) 

Alternately, for well sampled regions, this scale dependency can be calculated from the data. For 

example, using mean β of each region for each sample effort, we generate Fig. S19. 

 

Datasets and subsampling procedures 

The meadow ecosystem dataset of 605 × 1m2 plots was collected in 2007 and 2008 from 

meadow patches in the Garry Oak Ecosystem of southern British Columbia and northern 

Washington State (see Bennett et al., 2012 for details). To test the effect of area sampled (and γ) 

on β estimates, the meadow ecosystem dataset was subsampled in increments of 10 plots, from 5 

to 605 plots.  

The abandoned field dataset of 110 × 1m2 plots was collected in 2012 at the Koffler Scientific 

Reserve in southern Ontario, Canada. To test the effect of area sampled (and γ) on β estimates, 

the abandoned field data were subsampled at increments of 5 plots, ranging from 5 to 110 plots.  

The forest dataset was collected in 2002 from Mount St. Hilaire, near Montreal, Canada, and 

consisted of 85×50 m2 plots (see Gilbert and Lechowicz, 2005 for details). This dataset was 

subsampled in increments of 5 plots from 5 to 85 plots.  

The diatom dataset of 492 lakes was combined from several datasets of surficial sediments from 

lakes in eastern North America (see Bennett et al., 2010 for details), and was subsampled at 

increments of 10 lakes, from 5 to 485 lakes.  

The meadow ecosystem and forest plant datasets were initially measured using percent cover 

estimates and were converted to densities (cf. Gilbert & Lechowicz, 2004), as recommended for 

randomization of individuals (Crist et al., 2003). 

Note that the Chao distance is the Jaccard equivalent described in Chao et al. (2005). 
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Description of simulated communities 

To determine whether the patterns we observed in SD of mean αnull in our four datasets were 

inherent in subsampling from typical species-abundance distributions, we constructed simulated 

communities as per Kraft et al. (2011), testing for variation in SD αnull across a range of sample 

sizes and species pools (γtrue values). We used a lognormal species abundance distribution, with 

γtrue values ranging from 10 to 400, a plot density of 35 individuals per plot (the median of values 

used by Kraft et al., 2011), and plot numbers of 10 to 100. For each combination of plot number 

and γtrue, we created 100 simulated communities. We then calculated βdev and its components, 

using 1000 randomizations as per Kraft et al. (2011).  
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Supplementary Figures 

 

Fig. S1. Classical β versus number of plots (a), β deviation versus number of plots (b), observed 

β versus γ (c), β deviation versus γ (d) for forest plots; observed β versus number of lakes (e), 

βdev versus number of lakes (f), observed β versus γ (g), and β deviation versus γ (h) for diatom 

surveys.
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Fig. S2. γ versus area sampled (m2) for meadow ecosystem plots (a) and early-successional 

ecosystem plots (b). 
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Fig. S3. γ versus number of 50 m2 plots for forest plots (a), and γ versus number of lakes for 

diatom surveys (b). 
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Fig. S4. Observed β minus mean βnull (a), and standard deviation of mean βnull (b) versus area 

sampled for meadow ecosystem; observed β minus mean βnull (c), and standard deviation of 

mean βnull (d) versus area sampled for early successional ecosystem. 
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Fig. S5. Observed minus null β (a), and standard deviation of null β (b) versus number of plots 

for forest dataset; observed minus null β (c), and standard deviation of null β (d) versus number 

of lakes for diatom dataset. 
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Fig. S6. Standard deviation (SD) of mean randomized α versus sampling effort, for forest plots 

(a), and diatom surveys (b). 
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Fig. S7. βdev and numerators of Eqns. 2 and 2a,b for simulated data as described above. βdev (a), 

observed minus mean null β (b), and mean randomized minus observed mean α (c) versus 

number of plots for datasets with γtrue of 100; and βdev (d), observed minus mean null β (e), and 

randomized minus observed mean α (f) versus γtrue for datasets with 30 simulated plots. In all 

cases the numerators of Eqns. 2 and 2a,b centred on zero because the randomization process in 

Kraft et al. (2011) shuffled data (while preserving the abundance distribution) for data that were 

already randomly-generated within the constraints of the abundance distribution.  
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Fig. S8: Mean pairwise Sørensen distance versus number of 50 m2 plots sampled (m2) (a) and γ 

(b), for forest plots; mean pairwise Sørensen distance versus number of lakes sampled (m2) (c) 

and γ (d) for diatom dataset; multiple-site Sørensen versus number of 50 m2 plots sampled (e) 

and γ (f), for forest plots (a); and multiple-site Sørensen versus number of lakes sampled (m2) (g) 

and γ (h) for diatom dataset.  
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Fig. S9: Mean Jaccard (a) and Chao (b) distances with area sampled for meadow ecosystem (area 

increases with the number of plots, all plots 1m2). There is no significant relationship for either 

distance measure (both p>0.4). 
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Fig. S10: Mean Jaccard (a) and Chao (b) distances with area sampled for the early successional 

dataset (area increases with the number of plots, all plots 1m2). There is no significant 

relationship for either distance measure (both p>0.6). 
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Fig. S11: Mean Jaccard (a) and Chao (b) distances number of plots for forest plots. There is no 

significant relationship for either distance measure (both p>0.28). 
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Fig. S12: Mean Jaccard (a) and Chao (b) distances with number of lakes sampled for diatom 

surveys. There is no significant relationship for either distance measure (both p>0.4). 
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Fig. S13: Example of near-identical patterns for different measures of variation in Sørensen 

distances, early successional ecosystem plots. Mean Sørensen distance (a), mean distance to 

centroid (b) and median distance to centroid (c) all show no trend with number of plots sampled. 

Mean and median distances to centroid are corrected as per Stier et al. (2013). These patterns 

were repeated across all datasets.  
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Fig. S14: Scatterplots of multiple-site Sorensen versus observed beta for meadow ecosystem (a; 

r2 = 0.97, P<0.0001), early-successional ecosystem (b; r2 = 0.97, P<0.0001), forest plots (c; r2 = 

0.98, P<0.0001) and diatom dataset (d; r2 = 0.99, P<0.0001).  
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Fig. S15: Multiple-site Diserud & Ødegaard (2007) (DO) index versus number of plots for 

meadow ecosystem (a), early successional ecosystem (b), forest plots (c); and multiple-site DO 

index versus number of lakes for diatom dataset (d).   
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Fig. S16: Components of Sørensen deviations (Sørensen distances generated using the null model approach used to generate βdev) 

across area sampled (i.e., number of 1m2 plots) for meadow ecosystem and early successional ecosystem. Mean null Sørensen 

distances (a), standard deviation of mean null Sørensen distances (b), and Sørensen deviation (c) for meadow ecosystem; mean null 

Sørensen distances (d), standard deviation of mean null Sørensen distances (e), and Sørensen deviation (f) for early successional 

ecosystem. Correlations between Sørensen deviation and area sampled: r = -0.92, P>0.0001 (meadow ecosystem); r = -0.95, P>0.0001 

(early successional ecosystem). 
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Fig. S17: Components of Sørensen deviations (Sørensen distances generated using the null model approach used to generate βdev) 

across number of 50m2 plots for forest dataset and number of lakes for diatom surveys. (a) mean null Sørensen distances for forest 

plots; (b) standard deviation (SD) of mean null Sørensen distances for forest plots; (c) Sørensen deviation for forest plots; (d) mean 

null Sørensen distances for diatoms; (e) standard deviation (SD) of mean null Sørensen distances for diatoms; (f) Sørensen deviation 

for diatoms. Correlations between Sørensen deviation and number of plots/lakes: r = 0.24, P=0.35 (forest plots); r = -0.42, P>0.0001 

(diatoms).
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Fig. S18: Effect of density of individuals per sample on mean Sørensen distance between 

samples, using 100 pairs of samples for 20 simulated species drawn from abundance 

distributions simulated using the Fisher et al. (1943) log-series. The abundance of each species is 

calculated as follows: Y = (-1/log (1-c)) × cX/X, where Y is the relative abundance of each 

species of rank X (in our case 1:20), and c is a coefficient determining the evenness of the 

abundance distribution. We used c = 0.9, as per Chase and Knight (2013), which generates a 

realistic abundance distribution. Greater density of individuals leads to more shared species 

among plots (if species are randomly-distributed), which leads to lower mean Sørensen 

distances. 
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Fig. S19: Scale dependency of differences in classical β between two regions. The y-axis is the 

ratio of mean classical β in the meadow ecosystem to that in the old field ecosystem at the scale 

indicated (number of plots, x-axis). As is shown in eqn. S11, the scale dependency of this ratio 

cannot be expressed through a single index. 

 


