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ABSTRACT

Aim Approaches to calculating beta diversity (β) include classical measures based
on alpha (α) and gamma (γ) diversity, and multivariate distance-based measures.
Species–area relationships cause measurements of γ to vary, making comparisons of
classical β among regions contingent on sampling effort. A recent null-modelling
approach has attempted to account for variation in γ by calculating the degree to
which β deviates from a random expectation. Here, we clarify the mathematical
links between classical and multivariate approaches to measuring β, to derive
predictions regarding the reliability of classical, null-model and multivariate
approaches. Next, we use four ecological datasets and simulated data to test the
consistency of these approaches across sampling effort and γ. We focus on an issue
that arises when making comparisons among regions, namely that even small
changes to the area sampled can differentially increase measured γ in each region,
potentially causing artefacts in β that are driven by methodology rather than
biology.

Innovation Comparisons among regions using classical and null-model meas-
ures change dramatically as sampling effort and γ increase. This change is under-
stood for classical β because of species–area relationships, but not for null-model
measures, making comparisons among regions impossible using the null-model
approach. Multiple-site dissimilarity shows a similar sensitivity to γ as classical
measures. In contrast, pairwise multivariate distances show no systematic effect of
sampling effort and γ: increasing the number of sample plots decreases variability
but does not alter mean β.

Main conclusions Multivariate pairwise distances are independent of sample
size, offering the most robust comparison among regions. The widespread influ-
ence of sampling effort and γ indicate that only scale-dependent measures of
classical and multiple-site β are comparable, whereas null-model β may not be
comparable among regions. However, in cases where γ is well known, multiple-site
dissimilarity metrics offer several advantages, and should be strongly considered.

Keywords
Alpha diversity (α), beta diversity (β), classical metrics, gamma diversity (γ),
multiple-site dissimilarity, multivariate metrics, null model.

*Correspondence: Benjamin Gilbert,
Department of Ecology and Evolutionary
Biology, University of Toronto, 25 Harbord
Street, Toronto, ON M5S 3B2, Canada.
E-mail: benjamin.gilbert@utoronto.ca
†Authors contributed equally.

INTRODUCTION

Beta diversity (β) is an emergent property of species and the

environment; it describes the change in species from one area to

another and is considered to be a key signature of dispersal,

intra-specific competition, Janzen–Connell effects and the

spatial structure of environmental gradients (Harms et al., 2000;

Gilbert & Lechowicz, 2004; Legendre et al., 2005). In spatially

disjunct patches, such as those found in fragmented habitats, β
provides an intuitive measure of both the connectedness and the

ecological distinctiveness of patches (e.g. Tscharntke et al.,

2002). In contiguous habitat, β among samples can provide

estimates of spatial aggregation in species distributions (e.g.

Novotny et al., 2007). Because of the ecological relevance of β,
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ecologists are increasingly interested in quantifying how it

differs among regions or ecosystems (e.g. Kraft et al., 2011;

Myers et al., 2013; Zhang et al., 2013).

Despite the importance of β as an ecological metric, its quan-

tification has inherent challenges. Metrics of β may be influ-

enced by factors including the size of the species pool, the

density of individuals in a sample unit, the species abundance

distribution and species aggregation in space, making interpre-

tation of differences among regions difficult (Chase & Knight,

2013). As a result, the question of how to test and interpret

differences in β among regions remains an important challenge

for ecologists (Kraft et al., 2011; Qian et al., 2012, 2013;

Tuomisto & Ruokolainen, 2012).

There are two general approaches to measuring β (Anderson

et al., 2011): ‘classical metrics’, calculated using alpha diversity

(α) and gamma diversity (γ), and multivariate measures of

species turnover based on statistical summaries of dissimilarity

metrics (Legendre et al., 2005; Baselga, 2010; Legendre & De

Cáceres, 2013). Although these approaches measure different

phenomena, both fit Whittaker’s original concept of measuring

variation in species composition along environmental or spatial

gradients (Whittaker, 1960, 1972; Anderson et al., 2011;

Legendre & De Cáceres, 2013).

Recognizing the dependence of classical β on γ, recent studies

have proposed and implemented a null-model approach to

correct for γ dependence and allow comparison of classical β
among regions (Kraft et al., 2011; Mori et al., 2013; Stegen et al.,

2013). A separate branch of research has proposed using multi-

variate distance measures of β for inter-region comparisons

(Legendre & De Cáceres, 2013). To our knowledge, no study has

systematically tested the consistency of classical and multivariate

β across variations in sampling effort and γ, nor the relative

effectiveness of these approaches for comparing β among

regions.

The development of distinct approaches to quantifying β
raises important questions that can clarify how this field should

progress. First, how are the different measures of β related to

each other, and do these relationships suggest a single best

method of testing β? Second, how well do the different measures

perform when comparing β among regions? Although this

second question is difficult to address, as there is no single

perfect measure of β, we can nonetheless use sampling strategies

on real data to explore the effect of known differences among

regions, such as differences in γ measured from samples.

Here, we examine the reliability of currently used classical and

multivariate approaches for analysing β within and among

regions. We first explore the challenges of comparing β among

regions using classical and multivariate approaches, examining

the relationships between the approaches. We then use these

relationships to clarify how classical and multivariate measures

are linked. Next, we use four data sets to test the validity of β
metrics attained using each approach. We show that classical

metrics produce consistent biases, unlike their pairwise multi-

variate counterparts. These results allow us to recommend

general methods for measuring and interpreting variation in β
among regions.

MATERIALS AND METHODS

Beta diversity metrics: classical β

Classical metrics partition γ into α and β components, either

multiplicatively or additively (Whittaker, 1972; Lande, 1996). A

fundamental challenge of using these metrics for comparing β
among regions stems from this dependence of β on both α and

γ. For example, in the multiplicative β partitioning model used

by Kraft et al. (2011) and throughout this paper, β is measured

as β α γ= − ( )1 . Here, α is the mean number of species per

sample plot and γ is the total number of species among plots,

which is a sample-based estimate of the true regional species

pool that we refer to as γtrue. Comparisons of β among regions

that use this metric will be biased if either α or γ are not

representative of the region. This concern is not important for

α if the sampling technique (e.g. plot size and survey method)

is the same among regions – randomly selected plots will

produce α with a variance that can be estimated, whether this is

based on raw species values from complete censuses or richness

estimates (Colwell & Coddington, 1994).

A more difficult problem lies in measuring γ, and controlling

for variation in γ when comparing β among regions. Determin-

ing the true regional species pool (γtrue) can be difficult even for

well-documented areas (Lessard et al., 2012), and in many areas

the vast majority of species are too poorly studied to character-

ize species pools (Kraft et al., 2011). Sample-based measure-

ments of γ may be dependent on sampling effort (defined here

as the number of equivalent sample units used) and species–area

relationships (SARs). When SARs in different regions have dif-

ferent scaling exponents, measured γ based on the total number

of species among all plots will vary depending on sampling

effort, making it difficult to compare classical β between regions

(Gotelli & Colwell, 2001; Chao & Jost, 2012). A similar compli-

cation occurs when quantifying β over time. Species pools can

change over time due to colonizations and extinctions, making it

difficult to determine the species pool that has produced an

observed assemblage. In addition, the interplay of local (α-level)

and regional (γ-level) colonization–extinction dynamics further

complicates temporal comparisons of classical β among regions

(Olden & Rooney, 2006).

One approach to improve the effectiveness of comparisons of

classical β between regions is based on sampling effort: either

both regions may be sufficiently sampled to reach a reasonable

estimate of the regional species pool (γtrue) or sample sizes may

be rarefied to correct for bias. If a region is sampled until the

addition of species is low enough to be trivial, β can be calcu-

lated with a measured variance attributable to variation of α
among plots. Because sampling until γtrue is known is often

impossible, various rarefaction techniques have been proposed

to standardize sampling between regions (Gotelli & Colwell,

2001; Colwell et al., 2012). Recently, Chao & Jost (2012) pro-

posed rarefaction by sample coverage, because rarefaction to

equal numbers of individuals underestimates the richness of

more diverse communities. However, one disadvantage in this

approach is uncertainty in estimates of sample coverage. We do

J. R. Bennett and B. Gilbert

Global Ecology and Biogeography, © 2015 John Wiley & Sons Ltd2

Comparing regional differences in beta diversity

Global Ecology and Biogeography, 25, 368–377, VC 2015 John Wiley & Sons Ltd 369



not further explore the rarefaction approach, and instead

focus on approaches that do not require estimates of sample

coverage.

The second method to allow comparison of classical β among

regions is a statistical correction to account for variations in γ
from one region to another. Kraft et al. (2011) developed a pro-

cedure to correct for variation in γ across regions using a null

model designed to allow unbiased comparison of β among

regions, which we refer to as β deviation (βdev). βdev is adapted

from an earlier method that tests when the distribution of

species among sample plots differs from a random assembly

model (Crist et al., 2003). The βdev approach has since been used

by others (e.g. Mori et al., 2013; Stegen et al., 2013), and has

been adapted to further test the underlying determinants of β
(Myers et al., 2013) as well as phylogenetic β (Stegen et al.,

2012). The method for calculating βdev involves generating a null

distribution (βnull) with a measured standard deviation (βSD.null)

by randomly shuffling species among sites while holding species

abundances and plot densities constant (Kraft et al., 2011).

Unlike standard randomization tests that compare observed β
against null distributions (Crist et al., 2003), βdev represents an

effect size, calculated as:

β β β
βdev

observed null

SD null

= −
.

(1)

which can equally be written as:

β α α
αdev

randomized

randomizedSD
= −

( )
. (2)

It should be noted that βdev differs from classical β in that it

measures the difference in β from a random sample, relative to

the variation in the randomized data (equation 2). The overall

validity of βdev in being able to account for systematic changes in

γ has not been fully tested – initial tests of the performance of

the null model across variations in γ have only been performed

on randomly generated data that had an expected βdev of zero

(Kraft et al., 2011), and may therefore behave differently from

ecological data.

Beta diversity metrics: multivariate β

Conceptual differences between classical and multivariate

approaches are reviewed by Tuomisto (2010) and Anderson

et al. (2011). Both approaches have been used extensively to

measure β (Anderson et al., 2011; Legendre & De Cáceres,

2013). Many multivariate measures of β are distinguished from

classical metrics in that they use distance or resemblance

matrices to quantify compositional differences among plots or

sites (e.g. Baselga, 2010; Legendre & De Cáceres, 2013) rather

than directly calculating variation using synoptic measures of γ
and α (Anderson et al., 2011). We restrict our consideration

of multivariate measures to asymmetric presence–absence

metrics such as the Sørensen distance in order to compare to

classical β (Legendre & Legendre, 2012). In Appendix S2 we

show the mathematical relationship between two pairwise dis-

tances, Sørensen and Jaccard, and classical β (equations S1–S7

in Appendix S2). Due to the similarities in the pairwise dis-

tances, we focus only on the Sørensen distance in the main

article and present tests of the Jaccard index in Appendix S2.

Although the classical and multivariate approaches can be

mathematically linked, using the pairwise Sørensen distance to

determine variation in diversity among regions differs from

classical β in three important ways. First, so long as sites are

randomly selected and the sampling technique (i.e. plot size

and survey technique) is consistent among samples, we would

not expect a change in pairwise Sørensen distance with the

number of plots sampled because increasing the number of

plots increases neither α nor the total number of species in

any two plots (γ2). Thus, unlike classical β, we would not

expect the pairwise Sørensen distance to change with measured

γ, and the type of randomization procedure used to generate

βdev (equation 1) should not be necessary. Second, because the

pairwise Sørensen distance does not incorporate a null model,

it cannot test when a region’s β differs from that expected by

chance. However, methods have been developed to apply the

null-model approach to pairwise multivariate distances (Myers

et al., 2013). We test both null-model and standard pairwise

distance approaches, but note that mean pairwise distance in a

region is not indicative of non-random processes in and of

itself. The third, related, difference is that the use of Sørensen

distance provides an average measure of β between two plots

(equation S1 in Appendix S2), and therefore does not estimate

classical β that would be attained from sampling an entire

region.

Although pairwise dissimilarity measures should not be sen-

sitive to changes in sample coverage or estimated γ, they have a

distinct limitation: they do not account for species

co-occurrence among more than two sites (Diserud &

Ødegaard, 2007). Multiple-site dissimilarity measures have been

designed to overcome this limitation (Baselga et al., 2007;

Diserud & Ødegaard, 2007; Baselga, 2010). In this paper we

focus on the multiple-site Sørensen index of Baselga (2010),

which can be additively partitioned into both turnover and

nestedness components; however, we examine an additional

method (Diserud & Ødegaard, 2007) in Appendix S2. Although

the multiple-site Sørensen index of Baselga (2010) and its com-

ponents cannot be simplified with relation to β, as we have done

with the other metrics, the concordance of these methods with

classical β (Baselga, 2010, 2013) suggests they may be sensitive to

γ. However, to our knowledge, the sensitivity of these measures

to sampling effort and γ has not been tested, and the advantages

of these measures suggest that they may be particularly useful

for comparing β among regions.

Tests of β metrics

To test the ability of classical, null-model and multivariate

metrics to compare β among regions, we tested for systematic

dependences of these measures on sampling effort and the

resulting estimate of γ. Any dependence of β metrics on sam-
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pling effort and γ would imply that tests of differences among

regions will be either biased or scale dependent, as the magni-

tude of the differences will depend on γ and the sampling effort

used in a given study. We used three datasets from plot-based

plant surveys, and one dataset from surveys of microalgae in

lakes, where the sample unit is an individual lake, to test perfor-

mance of the metrics. The plant datasets included surveys of

1-m2 plots in the Garry oak ecosystem meadows in British

Columbia, Canada and Washington State, USA (Bennett et al.,

2012; Appendix S2), 1-m2 plots in early successional fields in the

Koffler scientific reserve in Ontario, Canada (B. Gilbert, unpub-

lished data), and 50-m2 forest plots near Montreal, Canada

(Gilbert & Lechowicz, 2004). The diatom dataset used surveys

from 492 lakes in eastern North America (see Ginn et al., 2007;

Bennett et al., 2010 for details). For the sake of brevity,

we present a subset of results from the meadow ecosystem and

early successional datasets in the main text, but present full

details on the datasets and results for the additional datasets in

Appendix S2.

To test the sensitivity of each metric to sampling effort and

γ, we calculated each metric for the full set of n sample units,

and then repeated our analysis with incrementally smaller

numbers down to five sampling units, using 100 random

subsamples at each increment of sampling effort (see Appen-

dix S2 for details). This allowed us to test if each metric

showed any systematic trend with sampling effort and γ, and

whether this in turn biased comparison among ecosystems. For

each subset, we calculated classical (uncorrected) β and βdev

using the methods of Kraft et al. (2011). For multivariate

pairwise distances, we used two common approaches: mean

pairwise Sørensen and Jaccard distances, as well as mean and

median distance to group centroids (Anderson et al., 2006),

using the correction of Stier et al. (2013). We also calculated

the multiple-site Sørensen index, as per Baselga (2010), using

the R package ‘betapart’ (Baselga & Orme, 2012), and the

index proposed by Diserud and Ødegaard (Diserud &

Ødegaard, 2007). In addition, we calculated an analogue of βdev

using the pairwise Sørensen distance, as per Myers et al.

(2013). In all cases, mean βnull (equation 1) was calculated

using 1000 randomizations of species distributions among

plots (following Kraft et al., 2011). Finally, we note that most β
measures assume that species are measured without error.

Although this is generally correct for complete censuses within

plots used in plant studies, it is often incorrect when incom-

plete sampling within plots is used (Colwell & Coddington,

1994; Chao et al., 2005). For these latter studies, appropriate

estimators for α and γ should be used for classical β, and mul-

tivariate distances should be corrected using the Chao distance

(Chao et al., 2005). Because these methods have only been

developed for pairwise distances, we restrict our exploration of

the effect of these estimators on the Chao distance.

RESULTS

Metrics for comparing β among regions should ideally show no

systematic change with sampling effort or γ, because if such a

change occurs at different rates among regions, differences will

be inconsistent. Standard measures of classical β unsurprisingly

fail this criterion, as they increase with area sampled and there-

fore γ (Figs 1 & S1–S3 in Appendix S2). For example, mean

classical β for the early successional and meadow ecosystems

were 0.69 and 0.84, respectively, if only 15 1-m2 plots were

sampled in each study system, but 0.78 and 0.90 respectively if

75 plots were sampled. In other words, the difference in classical

β between these ecosystems decreased by approximately 20% as

a result of these increases in sampling effort and the resulting

measured γ (Fig. 1).

The statistical correction for classical β, βdev, was also sensitive

to area sampled and the resulting γ, such that βdev could not be

reliably contrasted between ecosystems (Figs 1 & S1 in Appendix

S2). For example, with a sampled area of 15 1-m2 plots, βdev was

25 and 99 for the early successional and meadow ecosystems,
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Figure 1 Observed classical β versus area sampled (1 m2 plots)
(a, e), βdev versus area sampled (b, f), classical β versus γ among
plots (c, g), and βdev versus γ (d, h). Plots (a)–(d) are for a
meadow ecosystem and (e)–(h) for an early successional
ecosystem. The gap in classical β in (c) is due to a large increase
in γ between 5 and 15 sub-sampled plots (mean γ difference 5–15
plots = 24.2 species, T = 35.3, P < 0.0001; mean α difference 5–15
plots = 0.32 species, T = 1.16, P = 0.25).
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respectively, but this changed to 60 and 251 when 75 plots were

sampled, corresponding to an increase in the difference in βdev

between sites of over 250%. This difference can also be seen by

contrasting the effect of a change in γ in each region; increases in

γ increased βdev in both regions, but the increase was greatest in

the ecosystem that contained more species (Fig. 1).

The increase in βdev with sampling effort can be broken down

into its component parts. The difference between observed clas-

sical β and mean βnull exhibited varying trends with sampling

effort (Figs S4 & S5 in Appendix S2). However, the standard

deviation (SD) of mean βnull always decreased at a rapid rate

with sampling effort (Figs S4 & S5 in Appendix S2), causing βdev

to increase. Since γ was equal between observed and randomized

data in each subsample, the decrease in the SD of mean βnull with

sampling effort was itself driven by a decrease in the SD of the

mean randomized α (the denominator of equation 2) with sam-

pling effort (Figs 2 & S6 in Appendix S2).

To further explore why the βdev method was sensitive to

sampling effort, we generated simulated communities using

lognormal abundance distributions and a range of specified

regional species pools (γtrue), as per Kraft et al. (2011) to test

the βdev method (see Appendix S2 for details). These randomly

generated data do not allow a direct test of the βdev method

because the numerator in equations 1 & 2 is meaningless, as it

compares a randomly generated species richness with that

obtained by randomizing the data (i.e. the expectation is zero;

Fig. S7 in Appendix S2). However, these simulated data illus-

trate how the SD of mean randomized α changes as a function

of sample size and γ. Consistent with our field data, the simu-

lations showed that the SD of mean randomized α decreases

with sampling effort and that the steepest slope was found in

regions with higher γtrue (Fig. 2). These results were also found

for other species abundance distributions, indicating that the

patterns we see in our four tested datasets are likely to be rep-

resentative of a broad range of communities. Because the slope

of this relationship depends on the total number of species in

a region (Fig. 2), and does not appear to change in a predict-

able way with sampled γ (unlike classical β), there does not

appear to be a simple mathematical correction for βdev.

Multivariate distances showed distinctly different patterns

from βdev. Mean pairwise Sørensen distance showed no trend

with area sampled or γ (Figs 3 & S8 in Appendix S2; R2 < 0.001;

all P > 0.13, with over 1000 d.f. per test). Jaccard and Chao

distances showed similar results (Figs S9–S12 in Appendix S2; all

P > 0.28), as did centroid-based measures of mean Sørensen

distance (Fig. S13 in Appendix S2). In contrast, the multiple-site

Sørensen index of Baselga (2010) was sensitive to sampling

effort and γ, showing a trend that was similar to classical β
(Fig. 3). For example, the percentage difference between mean

multiple-site Sørensen index in the successional and meadow

ecosystems decreased from 25% for 5 samples to < 2% for 105

samples. Further analysis showed a strong correlation between

classical β and multiple-site Sørensen index (Fig. S14 in Appen-

dix S2). The multiple-site index of Diserud and Ødegaard

(2007) was also sensitive to sampling effort and therefore γ (see

Appendix S2 for details).
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Figure 2 Standard deviation (SD) of mean randomized α versus
sampling effort, for a meadow ecosystem (a), an early successional
ecosystem (b), and simulated data as per Kraft et al. (2011) with
specified species pools (γtrue) = 10 and 100 (c). Lines in (c) show a
fitted linear relationships between the SD of mean randomized α
and sampling effort for each specified species pool.
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Our final analysis tested a randomization procedure similar

to that used for βdev to detect departures from randomness in

the pairwise Sørensen distance. Interestingly, this analysis also

created a significant trend with sampling effort and γ in three

of four datasets (Figs S16 & S17 in Appendix S2). Moreover,

the null pairwise Sørensen distance did not vary predictably

with differences in γ. Mean pairwise Sørensen distances in the

more diverse meadow ecosystem were higher than those of the

early successional ecosystem, but this pattern was reversed in

the mean null distances (compare Fig. 3 with Fig. S16 in

Appendix S2). Together, these results suggest that the mean

pairwise Sørensen distance should be preferred over a null-

model Sørensen value when comparing β among regions.

However, the relatively large spread of mean Sørensen values at

small sample sizes (and low γ) suggests that the sample sizes

required to find statistically significant differences among

regions are likely much larger than those used in many studies

(i.e. more than 25 plots per region).

DISCUSSION

Our mathematical consideration of β measures suggested that

pairwise multivariate distances would provide scale-

independent estimates of β but that statistical methods were

necessary to correct for the dependence of classical β on γ. Our

tests confirmed our prediction for the pairwise Sørensen dis-

tance and showed that classical β, even using a recently devel-

oped correction for variation in γ (βdev; Kraft et al., 2011), failed

to correct for scale dependence and instead exhibited systematic

bias with sampling effort and γ. Our tests also showed that

multiple-site Sørensen indices (Diserud & Ødegaard, 2007;

Baselga, 2010) were sensitive to sampling effort and γ. Depend-

ing on sampling effort, different predictions could be generated

about how β differs among regions using either classical β, βdev

or the multiple-site Sørensen indices. An important question,

then, is to determine when these metrics that rely on estimated

γ are appropriate.

Previous research has challenged the βdev method in particu-

lar, suggesting that this measure preserves drivers of β in the null

model by preserving species abundance distributions (Qian

et al., 2013; Xu et al., 2015), which may themselves result from

various community assembly mechanisms (McGill et al., 2007).

More fundamentally, our results show that the null model does

not remove the dependence of β on γ, as it was designed to do.

The result is a metric that changes with sampling effort within a

given region and has a different rate of change in different

regions. Regions with more species appear to have higher rates

of change. This inconsistency is likely to bias comparisons

among regions with different numbers of species. The sensitivity

of the βdev method to sampling effort and γ suggests that results

of previous studies using this method should be viewed with

caution.

Although classical β and multiple-site Sørensen indices also

showed strong trends with sampling effort, and thus estimated γ,

these measures may be appropriate for developing scale-

dependent measures of beta diversity among regions. For clas-

sical β, the differences among regions will depend on the scaling

of SARs in each area – when these scalings can be estimated from

the data, a scale-dependent measure of β is possible (see Appen-

dix S2). Although we have not shown a similar mathematical

relationship for the multiple-site Sørensen index of Baselga

(2010), its strong correlation with classical β suggests that such

a relationship may exist. In contrast, the change in βdev with

sampling effort follows a different pattern (Fig. 1), which prob-

ably reflects the effect of changing species abundance distribu-

tions as more sites are included in a region (Xu et al., 2015) as

well as the change in the denominator of the metric (Fig. 3).

Because sampling-based changes in species abundance distribu-

tions differ among regions, a scale-dependent measure of βdev

may not be possible.

The pairwise multivariate metrics we tested, the Sørensen,

Jaccard and Chao distances, provide measures of β that are
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Figure 3 Mean pairwise Sørensen distance versus area sampled
(m2) (a, e), multiple-site Sørensen index versus area sampled (b,
f), mean pairwise Sørensen distance versus γ (c, g) and
multiple-site Sørensen index versus γ (d, h). Plots (a)–(d) are for a
meadow ecosystem and (e)–(h) for an early successional
ecosystem.
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invariant to sampling effort. This result was expected from our

knowledge of how these metrics are calculated from sampling

data – because they represent averages of all pairwise compari-

sons, they are not expected to change with sample size or γ.

However, even though pairwise measures were invariant to sam-

pling effort, the Sørensen-based null-model analogue of βdev (cf.

Myers et al., 2013) produced results that were sensitive to sam-

pling effort. In other words, the mean pairwise Sørensen dis-

tance performs better than a null-model test that uses the

Sørensen distance. In addition, unlike rarefaction techniques

(e.g. Chao & Jost, 2012), multivariate metrics such as Sørensen

distance do not depend on estimates of the number of individ-

uals sampled or sample coverage, but can nonetheless be cor-

rected if species sampling within sample units is incomplete

(Chao et al., 2005).

While multivariate measures such as the Sørensen distance

are not directly dependent on γ, they are, like classical β meas-

ures, sensitive to factors driving variation in α, such as spatial

aggregation, species abundance distributions and densities of

individuals per unit area (Chase & Knight, 2013). For example,

a region with greater density of individuals per unit area will

tend to have greater mean α than another, even if all species are

shared between regions and relative abundances are the same

(Gotelli & Colwell, 2001). Indeed, multiple factors including site

productivity (and therefore density of individuals), the scale of

environmental heterogeneity and species interactions, will influ-

ence α. However, these are often considered causal factors that

structure both α and β, rather than confounding or nuisance

factors (Cadotte & Fukami, 2005; Andrew et al., 2012; Germain

et al., 2013).

A roadmap to comparing β among regions

There has been intense debate on how best to measure β
(Tuomisto, 2010; Anderson et al., 2011). This debate has

advanced theory and interpretations of ecological data, but

always with Whittaker’s original goal of providing a meaningful

and comparable measure of diversity among sites or plots

(Whittaker, 1960, 1972). Recent attempts to compare β among

regions have introduced new complexities to the study of diver-

sity, as regional differences in species pools and the accumula-

tion of species with area make meaningful contrasts difficult.

Our study demonstrates that no single measure of β is perfect

for a between-region comparison, but highlights the strengths

and failures of different measures. The βdev method fails due to

an unforeseen dependence on γ that appears to bias differences

among regions. Moreover, our inability to predict how βdev

changes with sampling effort makes it impossible to quantify or

remove this bias. Unfortunately, this criticism applies to appli-

cations of this null-model approach to other measures of β,

suggesting that the goal of comparing departures from random-

ness among regions cannot be achieved with current methods.

Of the other approaches tested, each is most appropriate for

different questions, and we suggest that there are scenarios

where they could be used in conjunction. The first approach that

we recommend is the use of appropriate pairwise distance

metrics. By removing dependence on γ, multivariate metrics

such as the Sørensen distance eliminate a key source of uncer-

tainty and can provide reliable measures of β. Pairwise multi-

variate approaches also offer additional advantages for

measuring β that should be considered, such as allowing the

contribution of individual sites or species to variation in com-

munity composition to be determined (Legendre & De Cáceres,

2013). Similarly, methods have been developed to relate multi-

variate β to environmental or spatial variables (e.g. Borcard

et al., 2004; Ferrier et al., 2007), and to use multivariate β in

conjunction with richness models to predict community com-

position (Mokany et al., 2011). These analyses can offer clues to

community assembly mechanisms, although interpreting cau-

sality is not straightforward (Gilbert & Bennett, 2010; Anderson

et al., 2011; Warton et al., 2012).

Despite these advantages of pairwise methods, they can

diverge from multiple-site metrics and classical β because of

their failure to consider co-occurrence in more than two

samples at a time (Baselga, 2013). Classical β and multiple-site

Sørensen indices can overcome this shortcoming of pairwise

methods if their scale dependences can be accounted for. The

known scale-dependence of classical β makes this measure the

easiest to quantify across sampling efforts so long as SARs can be

properly quantified (equations S8 & S9, Fig. S19 in Appendix

S2). Although such a measure would be difficult to summarize,

it benefits from incorporating estimates of γ beyond that found

in two plots. Similarly, if the correct scaling can be modelled, the

multiple-site Sørensen index may be used to generate scale-

dependent measures of β, as this type of index offers important

advantages over the standard pairwise index. In this case, deter-

mining how nestedness and turnover vary with scale would need

to be explored further. Finally, because classical β and the

multiple-site Sørensen index of Baselga (2010) appeared to

asymptote at high levels of sample coverage (Fig. 3), areas with

sufficient sampling to reach an asymptote may be directly com-

pared with these scale-dependent measures.

Apart from the types of analyses that ecologists should use, our

data give clear recommendations about sampling effort. In par-

ticular, all metrics considered are highly variable at small sample

sizes (fewer than 25 plots in our datasets), and thus have little

power if sampling effort is low. As a result, the power of regional

comparisons should be considered carefully, as a null result may

reflect sampling effort rather than biology. We note that these

estimates are also sensitive to variation related to the spatial grain

of sampling. Community assembly mechanisms may differ

across spatial grains (Whittaker et al., 2001; Chase & Knight,

2013), and thus patterns in diversity and species distributions

may change considerably as the spatial grain of samples changes

(Tuomisto & Ruokolainen, 2012). The power of the analyses

would also be likely to change with the spatial grain of samples.

CONCLUSION

The sensitivity of the null-model approach to variations in γ
suggests that analogous problems may occur in other areas of

community ecology. In particular, several statistical tests used in
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community ecology rely on randomizations of a species matrix

to develop a statistical null model or standardized effect size.

The randomization approach is especially important in commu-

nity ecology because there is no relevant statistical null for

species assemblages, and this null is therefore often constructed

from randomized data. Tests using this approach range from

community phylogenetic statistics (Webb, 2000; Kraft et al.,

2007) to null models for species co-occurrence and nestedness

(Gotelli & McCabe, 2002; Ulrich & Gotelli, 2007).

The challenge arises when an effect size increases with sam-

pling (numbers of plots or species), and the rate of change in

effect size depends on the characteristics of the ecosystem, such

as the regional species pool. In these cases, developing standard

measures across ecosystems becomes difficult. Although previ-

ous research has attempted to statistically control for the impor-

tance of sampling effort on the measured effect size of

individual tests (e.g. Gotelli & McCabe, 2002), the importance of

sampling effort for the measured effect is often highly variable

among ecosystems (e.g. Ulrich & Gotelli, 2007). The approaches

used in these cases may be valid; however, the results from our

exploration of βdev suggest that further study should be con-

ducted to ensure that this is indeed the case.
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