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Abstract
1.	 The question of when to monitor and when to act is fundamental to applied ecol-

ogy and notoriously difficult to answer. Value of information (VOI) theory holds 
great promise to help answer this question for many management problems. 
However, VOI theory in applied ecology has only been demonstrated in single-
decision problems and has lacked explicit links between monitoring and manage-
ment costs.

2.	 Here, we present an extension of VOI theory for solving multi-unit decisions of 
whether to monitor before managing, while explicitly accounting for monitoring 
costs. Our formulation helps to choose the optimal monitoring/management 
strategy among groups of management units (e.g. species, habitat patches) and 
can be used to examine the benefits of partial and repeat monitoring.

3.	 To demonstrate our approach, we use case-simulated studies of single-species 
protection that must choose among potential habitat areas, and classification and 
management of multiple species threatened with extinction. We provide spread-
sheets and code to illustrate the calculations and facilitate application. Our case 
studies demonstrate the utility of predicting the number of units with a given 
outcome for problems with probabilities of discrete states and the efficiency of 
having a flexible approach to manage according to monitoring outcomes.

4.	 Synthesis and applications. The decision to act or gather more information can have 
serious consequences for management. No decision, including the decision to 
monitor, is risk-free. Our multi-unit expansion of Value of Information theory can 
reduce the risk in monitoring/acting decisions for many applied ecology problems. 
While our approach cannot account for the potential value of discovering previ-
ously unknown threats or ecological processes via monitoring programmes, it can 
provide quantitative guidance on whether to monitor before acting, and which 
monitoring/management actions are most likely to meet management objectives.
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1  | INTRODUC TION

The question of how much information is needed to inform man-
agement is central to applied ecology. Information from monitor-
ing is often vital to effective decision making. Unfortunately, many 
management decisions are made based on inadequate information 
(Sutherland, Pullin, Dolman, & Knight, 2004), which can lead to in-
efficient or counterproductive choices (Cook, Hockings, & Carter, 
2010). Monitoring, particularly if it is conducted over long time peri-
ods, has also led to the discovery of important environmental stress-
ors (e.g. Lindenmayer et al., 2012; Wintle, Runge, & Bekessy, 2010).

However, monitoring costs money and time, both of which can be in 
short supply. Monitoring instead of managing can also be a way of avoid-
ing difficult but necessary decisions (Nichols & Williams, 2006). Indeed, 
there are cases of threatened species being monitored continuously until 
they are extinct (Lindenmayer, Piggott, & Wintle, 2013; Martin et al., 
2012). Information gathering, beyond what is necessary to make an ef-
fective decision, risks dissipating resources that could have been used for 
management, and missing critical windows of opportunity (Chadès et al., 
2008; Martin et al., 2012; McDonald-Madden et al., 2010).

Value of information (VOI) theory provides an important tool to 
choose monitoring strategies. By explicitly modelling the value gained 
by monitoring, VOI theory can be used to determine whether additional 
information would be useful for a specific management question. The 
utility of VOI theory has been demonstrated for invasive species man-
agement (Hauser & McCarthy, 2009; Moore & Runge, 2012), disease 
control (Shea, Tildesley, Runge, Fonnesbeck, & Ferrari, 2014), threat-
ened species management (Canessa et al., 2015; Maxwell et al., 2015; 
Runge, Converse, & Lyons, 2011; Williams & Johnson, 2015), and con-
servation reserve selection (Mazor, Beger, McGowan, Possingham, & 
Kark, 2016; Runting, Wilson, & Rhodes, 2013). These applications of 
VOI suggest that decisions involving a combination of monitoring and 
management should first assess the value of monitoring strategies.

Despite the applicability of VOI to decision making, there are two 
key limitations of conventional VOI used in applied ecology. The first 
limitation is that VOI theory has not been fully developed for multi-
unit management, which occurs when managing multiple species or 
multiple habitat patches. In the decision theory literature, multi-unit 
problems have recently been explored (Bickel & Zan, 2009; Keisler, 
2004; Zan & Bickel, 2013), but with either strict assumptions of 
identical unit costs, or simulation to examine the influence of relaxed 
assumptions, rather than generalized theory that is broadly appli-
cable. In applied ecology, VOI theory has only been presented for 
problems involving decisions for single management units or single 
decisions applied to grouped sets of management units (e.g. all spe-
cies or habitat patches in a study), rather than individual decisions 
among management units (e.g. which species to monitor vs. manage, 
which habitats to monitor vs. manage). This limitation makes VOI dif-
ficult to implement for many real-world problems in applied ecology.

The second limitation is that when monitoring results and financial 
or time costs are not explicitly related, VOI cannot directly answer the 
question of when to monitor and when to act. For example, a VOI exer-
cise may suggest value in monitoring, but if the monitoring is expensive 

or the timeframe for successful management is limited, this value may 
be diminished or negated. This limitation is closely related to the first 
limitation, because budgets are often insufficient to manage all units 
and must be carefully allocated among them (e.g. Joseph, Maloney, & 
Possingham, 2009; Wilson, Carwardine, & Possingham, 2009).

Recently, several authors have attempted to overcome the chal-
lenge of explicitly considering monitoring costs in VOI analysis for 
problems in applied ecology. Maxwell et al. (2015) calculated the fi-
nancial value of perfect information for a conservation problem by 
estimating the cost of optimal population management with current 
information and with uncertainties resolved. Mazor et al. (2016) used 
systematic reserve selection software to infer that intensive monitor-
ing information provided better reserve selection outcomes than more 
extensive information. Shea et al. (2014) used financial VOI to infer 
whether a monitoring strategy would be worthwhile. Although these 
approaches provide important advances for quantifying the value of 
monitoring, they did not explicitly incorporate monitoring costs, nor 
determine the trade-off between monitoring and management costs.

Here, we present an extension of VOI theory for solving problems of 
monitoring versus action across multiple management units, while ex-
plicitly considering the cost of monitoring. In doing so, we link VOI theory 
with decision theory for optimal management. We also show that where 
decisions for management units are based on probabilities of discrete 
states (e.g. “is species X present in unit Y”), we can calculate the expected 
number of units with a given state and make decisions to monitor or act 
more efficiently than using aggregated single-decision VOI calculations. 
The theory presented is general, and we show how it can be used to un-
derstand risk in decision making when there is uncertainty in data. Using 
these calculations, we can explore a wide range of questions, including 
trade-offs between monitoring effort and cost, and the benefits of par-
tial or repeat monitoring. We demonstrate potential applications using 
two simple, simulated case studies of threatened species conservation.

2  | MATERIAL S AND METHODS

2.1 | Formulation

VOI analysis addresses the question of whether information to re-
duce uncertainty about a problem is worth gathering. Across multi-
ple management units, it can be used to address whether additional 
information would be useful for more efficient management, given 
limited budgets (Keisler, 2004; Zan & Bickel, 2013). To calculate VOI 
across multiple management units that explicitly accounts for costs, 
we require estimates of the following (Table 1): (1) cost of manage-
ment actions; (2) prior probabilities for states of the units (these can 
be non-informative priors); (3) expected values of our management 
actions (i.e. the estimated benefit of actions, given possible states of 
the management units); (4) monitoring accuracy; and (5) monitoring 
cost. Monitoring cost can be financial, and thus restrict management 
options, or can be incurred via impacts on management goals, such 
as when delays due to monitoring reduce management efficacy.

Estimates of these parameters can contain considerable un-
certainty. However, such estimates are commonly used in setting 
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conservation priorities (e.g. Ball, Possingham, & Watts, 2009; Bennett 
et al., 2014; Joseph et al., 2009; McCarthy et al., 2010), and indeed 
are implicit in every conservation decision regarding monitoring versus 
acting. With estimates of these parameters, we can relate monitoring 
and management costs and use these to calculate trade-offs between 
monitoring first versus acting on current information. As shown below, 
we can also explore plausible ranges for parameter estimates, to de-
termine the ranges of conditions in which we would decide to monitor 
before acting.

Below, we briefly describe conventional single-decision VOI the-
ory, using modified terminology of Canessa et al. (2015), outlined 
in Table 1. We then present a VOI formulation for decisions across 
multiple management units that accounts for both monitoring and 
management costs. We provide a full mathematical formulation in 
Appendix S1, and step-by-step walkthroughs for the case studies in 
Appendices S2–S4.

2.2 | VOI for a single management unit

According to VOI theory, one can quantify the expected value of a 
given action on a scale compatible with the management objectives, 
for example, the 50-year probability of extinction, or population size. 
The value of the action depends on the true state of the management 
unit(s), for example, whether the species is present or absent in a given 
habitat patch. However, there is uncertainty about which state the 
management unit is in.

The expected value of an action ai under uncertainty can be cal-
culated as follows:

This is the sum of all possible values for the action ai for all states 
s of the management unit, with each value weighted by its respective 
probability of the state s being true.

The expected value of the best management action under uncer-
tainty can be calculated as follows:

This is the maximum expected value from Equation 1 among all 
potential management actions. The same equation can be formu-
lated as a decision problem by introducing a binary decision variable 
xi identifying whether action ai is implemented:

The standard formulation used herein assumes a single manage-
ment action can be taken for a unit 

∑�A�
i=1

xi≤1 and represents the 
expected value of the management action one would logically take 
with current information.

Although absolute certainty rarely exists in environmental de-
cision making, the expected value of the best management action 
under certainty, which is calculated as follows, is nonetheless useful 
for comparing with the expected value of sampling or monitoring 
information:

This is the sum of all the best management actions for all the 
possible states of the management unit, weighted by the prob-
abilities of each state being true. This differs from the expected 
value of the best management action under uncertainty in that it 
sums across all possible states (instead of taking the single best 
management action with uncertainty). Thus, it is always equal to 
or greater than the expected value of the best management action 
under uncertainty.

The expected value under certainty can also be formulated as a 
decision problem:

where the decision variable xs
i
 identifies which action ai to implement 

for each possible state s.
The difference between the expected value of the best manage-

ment action under certainty and uncertainty is termed the expected 
value of perfect information (EVPI) and is calculated as follows:

Monitoring will typically improve upon current information and in-
crease the expected value of the best management action. Specifically, 
monitoring will change our belief about the probability of each state 
s being true. In VOI, probabilities for each state s being true are esti-
mated for each possible monitoring result using Bayes Theorem, that 
is, probability(state s|result y) = probability(result y|state s) × prior proba-
bility (state s)/probability(result y) (Raiffa, 1968). The expected value of 
the best management action when information from monitoring (y) is 
incorporated is as follows:

The expected value after monitoring information can also be for-
mulated as a decision problem:

(1)�
[
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]
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{
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(
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)
.

(4)
EVPI=EVcertainty−EVuncertainty

(5a)EVmonitoring=�
{
maxai∈A�|y[V(ai, s)]

}
.

TABLE  1 Terms of equations

Symbol Term

� Expected value of a management action

s State of a management unit

A Set of all possible management actions for a given 
state s

a Individual management action

x Binary decision variable identifying whether an 
action is taken

Ps Prior probability of a state s

V(a, s) Value of a management action for a state s

y Monitoring result

U Number of management units (e.g. habitats, 
species)

B Budget

c Cost of an individual management action
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where xy
i
 identifies the action ai to implement for each possible mon-

itoring result y. This is the expected value of the best management 
action for each monitoring result y, weighted by probabilities of ob-
taining the monitoring results.

The expected value of monitoring information (frequently 
termed the expected value of sampling information, EVSI, in the 
VOI literature) is the difference between the expected value of 
the best management action after monitoring and the expected 
value of the best management action under uncertainty (i.e. before 
monitoring):

2.3 | VOI across multiple management units with a 
limited budget

There are two key differences in calculation between VOI across mul-
tiple management units and conventional VOI. The first is that VOI 
across multiple management units allocates decisions among individ-
ual units, providing the flexibility to maximize our best overall values 
among units by ranking and summing expected values for manage-
ment decisions within a budget, as opposed to choosing among gen-
eral strategies presented as a single-decision problem (Bickel & Zan, 
2009; Zan & Bickel, 2013). This flexibility has important implications. 
For example, if we are deciding whether to protect a single habitat 
patch, our optimal decision may be to protect even after monitoring 
does not confirm the presence of our species of interest (because 
there is a diminished, but non-zero posterior probability it is present). 
But if we are deciding which of a set of habitat patches to protect, we 
may only protect patches where we actually found the species.

The second difference from conventional VOI is that for problems 
involving probabilities of discrete states, prior probabilities can be 
used to estimate the number (or fraction) of management units with a 
given state, using the linearity of expectation property of random vari-
ables, that is, �(X+Y)=�(X)+�(Y). This allows us to allocate manage-
ment or monitoring decisions among units to maximize the summed 
expected values among units, within a given budget. If our budget was 
unlimited, we would calculate expected value of the best decisions 
given current, perfect or monitoring information for all management 
actions, and our expected values would simply be the summed results 
of conventional VOI equations across all management units. In the far 
more likely scenario of a limited budget, we can calculate the expected 
value of decisions across management units and choose the optimal 
set of decisions that maximizes the summed expected value, subject 
to our budget.

The expected value of the optimal group of management actions 
under uncertainty is as follows:

This is the maximum (subject to the budget B) of the summed ex-
pected values of management actions among units under uncertainty 

(Equation 1), where Aj is the suite of available actions for unit j, and 
x
j

i
 is a decision variable which identifies which action a j

i
 to implement 

for a given unit j (see Appendix S1 for details).
Equation 7 can be formulated as a knapsack problem, whereby 

a decision maker with limited capacity must choose among manage-
ment options to maximize value. Knapsack problems have a long his-
tory in optimization research, and many algorithms to solve them have 
been proposed (see Kellerer, Pferschy, & Pisinger, 2004; Martello & 
Toth, 1990 for detailed reviews). In applied ecology, examples of the 
knapsack problem include setting priorities for managing species (e.g. 
Bennett et al., 2014; Joseph et al., 2009) and managing threats to bio-
diversity (e.g. Carwardine et al., 2014). Finding an exact solution to a 
knapsack problem can be challenging and require considerable com-
puter resources, especially when investments and returns are strongly 
correlated and the number of potential actions and management units 
is large (Pisinger, 2005). However, heuristics can be used to find ap-
proximate solutions. One well-known approximation first proposed by 
Dantzig (1957) is to rank potential actions among management units 
by the expected cost-effectiveness of management based on current 
knowledge (i.e. expected value of decision under uncertainty/action 
cost), and choose units sequentially according to rank, with the goal 
of managing the units with the greatest summed expected value. In 
conservation, this approach has formed the basis of prioritization pro-
tocols for threatened species (e.g. Bennett et al., 2014; Government of 
New South Wales, 2013; Joseph et al., 2009), and an analogous tech-
nique has been used for reserve selection (Moilanen, 2007). Although 
this approach can be less efficient than more complex approaches 
(Kellerer et al., 2004), particularly when costs of actions are large com-
pared to the overall budget, it is intuitive and easy to illustrate. We use 
it in our case studies, but note that our methods are compatible with 
other techniques. We also note that individually suboptimal actions 
may sometimes be optimal for multi-unit problems (see Appendix S1 
for details). In the simple case where the cost of management for all 
units is equal (e.g. if we are trying to allocate equal-sized predator 
exclosures among habitats), costs can be normalized to one, and the 
expected cost-effectiveness of management in a unit is simply the ex-
pected value of the chosen management action under uncertainty for 
that unit.

2.4 | Expected value of optimal group of 
management actions under certainty

Among multiple management units, the expected value of the opti-
mal group of management actions under certainty can be calculated 
as follows:

This is the maximum, subject to the budget B, of the summed 
probabilities of possible states s for each unit, multiplied by the 
values of actions aj

i
 among all units for each possible state. For dis-

crete probability distributions, we can use prior probabilities among 
all management units to predict the expected number (or fraction) 
of units with a given state using the linearity of expected values 
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i
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property for random variables. We can then calculate the expected 
values of potential management decisions for units with the pre-
dicted states and calculate the expected value of the optimal group 
of management actions among units that can fit within our budget.

The EVPI is calculated with Equation 4, using expected values of 
the optimal group of management actions for perfect versus current 
information for multiple management units. Again, when manage-
ment costs are equal among units, the expected cost-effectiveness 
for a unit is simply the expected value of the chosen management 
action for a given unit.

The expected value of the optimal group of management actions 
after monitoring is calculated as follows:

This is the maximum, subject to the budget B, of the summed 
expected values of actions aj

i
 among all units j after monitoring. 

Specifically, it is the maximum (subject to budget) summed value 
among all units, of the probability of result y, multiplied the value of 
action aj

i
 given state s, weighted by the probability p|s of state s given 

result y. For probabilities of discrete states, probabilities of obtaining 
a result y can be used to calculate the expected number or fraction 
of units with each outcome, and monitoring accuracy can be incor-
porated into the expected value of a management action given the 
monitoring outcome, as per Equations 5a and 5b. As with Equation 8, 
EVmonitoring is maximized by allocating the budget to management ac-
tions among the units that yield the highest summed expected val-
ues. The expected value of monitoring information is calculated using 
Equation 6, but using results for multiple management units.

2.5 | Explicitly considering cost of monitoring

To account for monitoring cost via the budget, we calculate the 
expected values using the net budget after subtracting monitoring 
costs. It is also possible to account for the cost of monitoring in a 
single-decision context, by removing any potential management ac-
tions that cannot be afforded if monitoring costs reduce the man-
agement budget. In contrast, the cost of delays caused by monitoring 
can be directly incorporated into the expected value of management 
actions, as we illustrate in Case Study 2.

2.6 | Case Study 1—Habitat protection for 
threatened plant conservation

In this case study, a conservation agency is initiating a programme to 
protect occurrences of a threatened plant species on private land, by 
arranging 20-year stewardship agreements. Although we use simu-
lated parameters to simplify illustration of our method, we endeav-
oured to make them as realistic as possible, using approximate costs 
of surveys, taxes and land agreements from farmland in southern 
Ontario, Canada.

As part of stewardship agreements, the agency will pay landown-
ers the equivalent of 20 years of taxes in exchange for protecting 

1 ha parcels of private land. Table S1 provides details of cost calcu-
lations. Briefly, the estimated survey cost is $500 per parcel, and the 
cost of the 20-year stewardship programme is $5,000 per parcel. 
The agency has a total budget of $40,000 for this programme, which 
is sufficient to protect eight parcels if all funds are used for steward-
ship agreements and none for surveys.

The agency is considering 20 parcels potentially contain-
ing the species (Table S1). For 10 of the parcels, the probability 
of occurrence is estimated as c. 0.5, due to recorded occurrence 
in an outdated survey. The remaining 10 parcels have estimated 
probabilities of occurrence of c. 0.1, based on habitat suitability 
only. The agency wants to know if it should survey the parcels 
before deciding which ones to protect, or if it should arrange pro-
tection without monitoring. For simplicity, we measure value of a 
management action V(a,s) as conserved occurrences of the threat-
ened species; V(a,s) = 1 if a parcel in which the species occurs is 
protected. No other management action contributes to species 
persistence; thus, the other management actions (not protecting 
a parcel, or protecting a parcel where the species does not occur) 
have V(a,s) = 0.

We evaluate whether the agency should survey the parcels be-
fore deciding which ones to protect, using both conventional VOI 
and VOI for multiple management units. We present detailed cal-
culations for a detection probability of 0.8 with no false positives, 
and parcels with an estimated prior probability of occurrence of 0.5. 
We provide worksheets with additional calculations in Appendix S2, 
including calculations for 0.1 probability of occurrence, and alterna-
tive scenarios including monitoring only a subset of parcels, differ-
ent management costs for some parcels and repeat surveys. These 
spreadsheets are intended to further demonstrate the flexibility of 
our approach and to facilitate understanding of the calculations.

To illustrate the influence of variation in survey accuracy esti-
mates, we calculate VOI across a realistic range of survey detec-
tion probability from 0.05 to 0.95 (e.g. Chen, Kéry, Plattner, Ma, & 
Gardner, 2013; Chen, Kéry, Zhang, & Ma, 2009). We also explore 
the influence of variation in monitoring costs. While our estimate 
of $500 per 1-ha area is compatible with current consultant rates 
for single surveys, other monitoring options (e.g. free citizen science 
or more expensive, intensive programmes) might be available. Thus, 
we simulate monitoring programme costs across a range from $0 to 
$1,500 per parcel.

2.7 | Case Study 2—Classification and 
management of species threatened with extinction

A conservation agency wishes to prioritize management of species 
based on extinction risk. Here, we consider the “cost” of monitoring 
as the probability that an endangered species will go extinct during 
monitoring and assume that the financial cost of monitoring is sepa-
rate from the management funding pool.

In this case study, there are three threat categories, “endan-
gered,” “threatened” and “not threatened” based on estimated ex-
tinction risk. After initial population monitoring, 20 species have 

(9)EV
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been classified as “threatened”; however, there is considerable un-
certainty as to whether the classification is accurate. The agency 
believes that there is a 50% probability that the classification is accu-
rate, a 25% probability that extinction risk has been underestimated 
such that the category “threatened” is too low (i.e. a species classed 
as “threatened” is really “endangered”), and a 25% probability the 
category “threatened” is too high (i.e. a species classed as “threat-
ened” is really “not threatened”). This means that we expect approx-
imately 5 of these 20 species to be endangered, 10 to be threatened 
and 5 to be not threatened.

The agency has the budget to undertake long-term manage-
ment for 17 of its 20 “threatened” species. It can either act now or 
choose to undertake a second round of monitoring to better un-
derstand their threat status. However, it estimates that during the 
time it takes to monitor, each endangered species will have a 10% 
probability of going extinct. In this round of monitoring, there is 
again a 50% probability that risk is correctly estimated for a given 
threat category, a 25% probability that risk is underestimated for a 
given category, and a 25% probability that risk is overestimated for 
a given category. However, for species assigned to the category “en-
dangered,” any overestimate of risk would still assign them to this 
category; thus, there is a 75% probability of correctly assigning this 
category. Likewise, for species assigned to the category “not threat-
ened,” there is no lower category, so there is a 75% chance of cor-
rectly assigning these species.

Because the agency wants to manage species with the greatest 
threat, its value structure for management is as follows: for man-
aging an endangered species, the value is 2; for managing a threat-
ened species, the value is 1; for managing a non-threatened species, 
the value is 0. The agency wants to maximize the summed value 
among managed species. In Appendix S3, we present an alternative 
value structure with negative (penalty) values for management of 

non-threatened species and non-management of threatened and 
endangered species.

3  | RESULTS

3.1 | Case Study 1—Habitat protection: 
Conventional single-decision VOI

The expected value of protecting a parcel with 0.5 prior probabil-
ity of occurrence and current information (Equations 2a and 2b) is 
the sum of the values for the action “protect” when the species is 
present or absent, weighted by the probability of each state, which 
is (1 × 0.5) + (0 × 0.5) = 0.5 (Table 2). The expected value of not pro-
tecting a parcel, similarly calculated, equals 0. Thus, the best man-
agement action in this case is “protect” and its expected value with 
current information is 0.5.

In our case, there is only a value for protecting an occurrence. 
Thus, the expected value of the best management action under 
certainty, which is the sum of the values of the best management 
actions for any state of the management unit, weighted by the prob-
ability of each state, is 0.5 + 0 = 0.5, and the EVPI (Equation 4) is 0.

If the parcel is monitored and the species is found, the probabil-
ity of occurrence is 1 because there are no false positives, whereas 
if the species is not found, the updated probability of occurrence 
is (probability not found|present) × (prior probability)/(probability 
not found) = 0.17 (Table 3). The probabilities of obtaining the results 
“found” and “not found,” based on prior probabilities, are 0.4 and 
0.6 respectively (Table 3). The expected value of protection after the 
species is “found” in a parcel equals 1. However, even if the species 
is not found in a parcel, the expected value of protecting that parcel 
is 0.17 due to the possibility of a non-detection error.

For monitored parcels with 0.5 prior probability of occur-
rence, the expected value of the decision after monitoring is thus 
(1 × 0.4) + (0.17 × 0.6) = 0.5, and the expected value of monitoring 
information (Equation 6) is 0. This result is logical, since the best deci-
sion for a single parcel only is to “protect” with or without monitoring.

3.1.1 | Habitat protection: VOI across multiple 
management units with a limited budget

Using current information, the expected value of protecting par-
cels with 0.5 probability is 0.5 (Equations 2a and 2b). The expected 
value of protecting parcels with 0.1 probability is 0.1. Protecting the 

Present Absent Probability of result

Expected accuracy of monitoring

Found 0.8 0 0.5 × 0.8 + 0.5 × 0 = 0.4

Not found 0.2 1 0.5 × 0.2 + 0.5 × 1 = 0.6

Updated belief after monitoring

Found 1 0

Not found 0.2 × 0.5/
(0.2 × 0.5 + 1 × 0.5) = 0.17

1 − 0.17 = 0.83

TABLE  3 Monitoring accuracy and 
updated beliefs for Case Study 1 parcels 
with 0.5 prior probability of occurrence, 
assuming 0.8 probability of detection and 
no false positives

TABLE  2 Prior probabilities and values for parcels with 0.5 
probability of occurrence in Case Study 1

Present Absent
Expected value under 
uncertainty

Prior probability 0.5 0.5

Values of actions

 “Protect” 1 0 1 × 0.5 + 0 × 0.5 = 0.5

 “Do not Protect” 0 0 0 × 0.5 + 0 × 0.5 = 0
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parcels with 0.5 probability is more cost-effective, and the best strat-
egy is to protect as many of these as possible. Our expected value of 
the optimal group of management actions using current information 
is our predicted number of occurrences conserved: 0.5 × 8 = 4. With 
perfect information, we would expect to find 0.5 × 10 + 0.1 × 10 = 6 
parcels with occurrences on average. The EVPI (Equation 4), given 
that we could afford to protect all six expected occurrences, is thus 
6 − 4 = 2.

If we monitored before protecting, we would predict the out-
comes outlined in Table 4, that is, our monitoring would find, on 
average, 4.8 occurrences and fail to find 1.2 occurrences. Our top-
ranked management options would be to protect parcels where the 
focal species was found, which would lead to 4.8 expected occur-
rences (Table 4).

If monitoring had no cost, we would have sufficient resources to 
protect eight parcels, including the expected 4.8 parcels with found 
occurrences (our two best ranked outcomes), plus 3.2 of the next 
most cost-effective parcels we can afford, which in this case are 
those with 0.5 prior probability, and no found occurrence. However, 
the cost of monitoring ($10,000) would sacrifice protection of two 
parcels, leaving resources for protecting the predicted 4.8 found 
occurrences, and an additional 1.2 parcels from the next-ranked 
outcome (Table 4). Thus, the expected value of the optimal group of 
management actions would be 4.8 + 1.2 × 0.17 = 5 occurrences, and 
the expected value of monitoring information, once the monitoring 
budget is considered, is 5 – 4 = 1. In other words, we would expect 
to protect an additional parcel that currently houses the focal spe-
cies if we were to monitor, even though we would have to sacrifice 
protecting two parcels. Thus, the agency would justifiably spend 
the $10,000 cost of the monitoring programme. Note how the VOI 
across parcels with our limited budget leads to a different decision 
(monitor first) than if we had extrapolated conventional VOI to any 
eight parcels.

3.1.2 | Sensitivity to parameter variation

When we calculate VOI across a realistic range of survey detection 
probability from 0.05 to 0.95, we can see that the expected value 
of monitoring information is negative when detectability falls below 
0.5 (Figure 1a). Thus, in this case if the species cannot be detected 
with >50% probability when present, it is better to act on existing 
information rather than monitor all parcels. When we calculate VOI 
across a range of monitoring programme costs from $0 to $1,500 
per parcel, we see that VOI is negative for monitoring costs >$1,000 
per parcel (Figure 1b).

3.2 | Case Study 2—Classification of threatened 
species: Single-decision VOI

Using Equation 1, the expected value of managing a species currently 
classified as “threatened” with current information is (probability 
it is endangered × value if endangered) + (probability it is threat-
ened × value if threatened) + (probability it is not threatened × value TA
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if not threatened), which is 0.25 × 2 + 0.5 × 1 + 0.25 × 0 = 1. The ex-
pected value of not managing is zero. Since there is no value for the 
decision to not manage, the EVPI is the same as the expected value 
of current information.

The expected value of monitoring information calculations are 
shown in Tables 5 and 6. In this case, we are accounting for the prob-
ability that our monitored species may be “endangered,” and if so 
may go extinct during the course of monitoring (Table 6). We then 
subtract this from the expected value of the decision with monitor-
ing information, with the result being 0.95. Using Equation 6, the 
expected value of monitoring information is 0.95−1 = −0.05, which 
would lead to the decision “do not monitor.”

3.2.1 | VOI across multiple management units

The expected value of the optimal group of management actions 
under uncertainty is simply the summed expected value of the best 
management actions with current information for the 17 species we 
can manage, 1 × 17 = 17. For the EVPI, we assume we would manage 
up to 17 species with the greatest threat. We would manage the 
five expected endangered and 10 expected threatened species for a 
total value of 5 × 2 + 10 × 1 = 20, and an EVPI of 20−17 = 3.

When calculating the expected value of monitoring information, 
we must account for the potential extinction of endangered species 
(10% probability per species) while monitoring. Based on the prior 

F IGURE  1  (a) Expected value of 
monitoring information in Case Study 
1, across a range of detectability for 
the focal species; (b) expected value of 
monitoring information in Case Study 1, 
across a range of monitoring costs
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TABLE  5 Case Study 2 probability of results after monitoring species currently classified as “threatened”

Classification
Probability one  
category too low

Probability  
correct

Probability one  
category too high

Probability of classification after 
monitoring

Endangered 0 0.75 0.25 0.75 × 0.25 + 0.25 × 0.5 = 0.3125

Threatened 0.25 0.5 0.25 0.25 × 0.25 + 0.5 × 0.5 + 
 0.25 × 0.25 = 0.375

Not threatened 0.25 0.75 0 0.25 × 0.5 + 0.75 × 0.25 = 0.3125

TABLE  6 Expected value of monitoring information for single decision in Case Study 2. Full calculation for updated belief of “endangered” 
after monitoring result “endangered” is shown

Endangered Threatened Not threatened Expected value if managed

Updated beliefs after monitoring result “endangered”

(prob result “endangered”|endangered)/(prob result 
“endangered”)  = (0.75 × 0.25)/(0.75 × 0.25 + 0.25 × 
 0.5) = 0.6

0.4 0 2 × 0.6 + 1 × 0.4 = 1.6

Updated beliefs after monitoring result “threatened”

0.167 0.67 0.167 2 × 0.167 + 1 × 0.67 + 0 × 0.167 = 1

Updated beliefs after monitoring result “not threatened”

0 0.4 0.6 1 × 0.4 + 0 × 0.6 = 0.4

Expected value of best management action with 
monitoring if no extinction risk during monitoring

0.3125 × 1.6 + 0.375 × 1 + 0.3125 
× 0.4 = 1

Expected value of best management action with 
monitoring including extinction risk during monitoring

0.3125 × 1.6 + 0.375 × 1 + 0.3125 
× 0.4 − (0.1 × 0.25 × 2) = 0.95
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probability of 0.1 that we will lose an endangered species during 
the course of monitoring and the prior expectation of five endan-
gered species, we would expect to lose 0.5 species on average. 
Taking this into account, our calculation of the expected value of 
the optimal group of management actions after monitoring is pre-
sented in Table 7. The expected value of monitoring information is 
18.2−17 = 1.2. Since the expected value of monitoring information 
is positive, the agency would be justified in monitoring before act-
ing, despite the risk of extinction while monitoring is taking place. 
This contrasts with the single-decision VOI that suggests monitoring 
would not be recommended.

4  | DISCUSSION

Value of information theory can help to guide monitoring, by explic-
itly estimating the expected value of management actions before 
and after monitoring. However, two key limitations of VOI in applied 
ecology have been its application within a single-decision frame-
work, rather than over multiple decisions across management units, 
and the lack of explicit consideration of monitoring costs. In the 
broader literature, VOI for multi-unit problems has been explored, 
but with simplified parameters (e.g. perfect information; Keisler, 
2004), equal costs among all units (Zan & Bickel, 2013), or via simu-
lation to explore non-equal costs or non-identical probabilities (Zan 
& Bickel, 2013). Our application is more general and explicitly links 
monitoring costs to non-monetary value measurements (e.g. number 
of species or sites conserved).

In addition, we also demonstrate a crucial property of VOI across 
multiple management units for probabilities of discrete states: prior 
probabilities can be summed among units, to estimate the expected 
number of units corresponding to each potential result. This gives 
the flexibility and realism of allowing different monitoring or man-
agement decisions among units (even with the same prior probabil-
ities), to maximize expected value. To our knowledge, this property 
of VOI has not previously been recognized. Previous applications 
(Bickel & Zan, 2009; Keisler, 2004; Soares et al., 2012; Zan & Bickel, 
2013) have calculated VOI based on summed individual expected 
values among units.

This property has important implications. As we have shown in 
our case studies, calculating VOI across multiple units can increase 
the expected value of monitoring information compared to a single-
decision case, because it can allow estimation of the expected num-
ber of units with each possible monitoring result, and the choice 
of management among units to maximize total expected values. 
We note, however, that this property is applicable to decisions in-
volving discrete states (e.g. presence/absence of a species, threat 
categories), while problems involving continuous distributions (e.g. 
expected amount of a particular habitat among patches), and non-
independence among units or value objectives require further ex-
ploration. For example, in cases where sampled units from a single 
population lead to increased accumulated knowledge to improve a 
model (e.g. Soares et al., 2012), extrapolation of probabilities across TA
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units will not be applicable and simulation-based approaches may 
be necessary.

Multiple-unit decisions with limited budgets are very common 
in applied ecology. For example, spatial resource management al-
locations often consider many management units (e.g. Leathwick, 
Moilanen, Ferrier, & Julian, 2010; Wilson, McBride, Bode, & 
Possingham, 2006), and threatened species conservation pro-
grammes typically rank species based on priorities (e.g. International 
Union for Conservation of Nature and Natural Resources (IUCN), 
2017; Joseph et al., 2009). Even the more quantitative approaches 
to these issues are often based on limited data, because time and 
financial resources are scarce. These limitations are frequently ac-
knowledged, and caution is urged in implementing recommenda-
tions where parameters are uncertain (e.g. Game & Grantham, 2008; 
Moilanen et al., 2014).

Various quantitative methods of addressing uncertainty in de-
cision making have been implemented for conservation problems, 
including sensitivity analysis to examine the influence of input pa-
rameters (e.g. Ardron, Possingham, & Klein, 2008), assigning greater 
weight to more certain data or outcomes (Moilanen et al., 2014; 
Tulloch et al., 2013), and using either upper or lower bounds of un-
certainty estimates as the basis for decisions (Moilanen et al., 2014).

Multi-unit VOI analysis provides a distinct and complementary 
approach to addressing uncertainty in multi-unit problems, through 
examining the potential utility of new information in making more 
efficient decisions. By calculating the expected value of monitoring 
information across management units and explicitly linking monitor-
ing and management costs, agencies can better partition their bud-
gets to reducing uncertainty versus immediate action.

Exploring the influence of uncertainty in parameter estimates 
on VOI can also be highly informative in targeting monitoring to 
reduce the most influential uncertainties, or determining the plau-
sible ranges of parameters for which monitoring is worthwhile. For 
example, in Case Study 1, the management agency could use in-
formation regarding detectability (e.g. is the species easily recog-
nizable or is it cryptic?), as well as the expected thoroughness of 
surveys (Chen et al., 2009, 2013; McCarthy et al., 2013) to help 
determine whether to monitor first or protect without monitor-
ing. Likewise, if monitoring costs are uncertain but can be esti-
mated within a reasonable range, VOI could be calculated across 
this range. It is important to note that the results of our artificial 
case study analyses are particular to the parameters we chose. For 
example, thresholds for positive VOI we identified for monitoring 
accuracy and cost in Case Study 1 cannot be applied to other stud-
ies, and sensitivity should be evaluated on a case-by-case basis. 
More complex consideration of uncertainty across multiple vari-
ables could assign probability distributions to these variables and 
use sensitivity analysis to assign a probability that a given strategy 
(e.g. monitor first) is optimal.

Another potential limitation of VOI theory is its perceived 
complexity (Canessa et al., 2015). This is a potential problem 
with decision-theoretic or evidence-based approaches in gen-
eral (Possingham, Ball, & Andelman, 2000; Pullin & Knight, 2005). 

Managers have limited time and must have expertise in several as-
pects of decision making, so there is a tendency to use experience-
based information in decision making (Cook et al., 2010; Pullin & 
Knight, 2005). We hope that by illustrating our methods using mul-
tiple formats (including customizable spreadsheets and code in the 
Supporting information that detail calculation steps), that we can 
diminish this barrier.

Both individual and multi-unit VOI theory are also limited in their 
ability to account for uncertainties. Although the potential influence 
of uncertainties in VOI input parameters can be examined using sim-
ulation across reasonable ranges of parameter estimates, VOI the-
ory can only resolve questions around so-called known unknowns 
(e.g. survey accuracy) and cannot account for surprise results that 
often occur during monitoring programmes (Doak et al., 2008; 
Wintle et al., 2010). While decisions to monitor must be carefully 
considered in light of limited resources (Lindenmayer et al., 2013; 
McDonald-Madden et al., 2010), the benefits of long-term monitor-
ing for finding new threats and solutions cannot be discounted, es-
pecially when programmes are sufficiently adaptable to incorporate 
new information into monitoring protocols (Lindenmayer & Likens, 
2010).

A final consideration is that VOI theory generally calculates ex-
pected values of information, based on probabilities. This uses the 
implicit assumption of risk neutrality. The actual states of a system 
or results of monitoring may be different from those that are ex-
pected, and the actual values of decisions can be affected accord-
ingly. Such uncertainties may be uncomfortable for conservation 
and resource management agencies, which appear to be generally 
risk averse (Tulloch et al., 2015). Explorations of relationships be-
tween the degree of risk aversion and single-decision VOI suggest 
nonlinear relationships that are highly dependent on input param-
eters (Eeckhoudt & Godfroid, 2000; Hilton, 1981; Willinger, 1989). 
Intuitively, a strategy of repeated monitoring can improve certainty 
before acting. However, given that monitoring can have substantial 
financial costs, and can also lead to missed management opportu-
nities, the decision to monitor is not risk-free. The extension of VOI 
theory we have presented can provide an objective framework for 
making justifiable decisions on when to monitor and when to act in 
many management scenarios.
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