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A B S T R A C T

Identifying ecological drivers of disease transmission is central to understanding disease risks. For vector-borne
diseases, temperature is a major determinant of transmission because vital parameters determining the fitness of
parasites and vectors are highly temperature-sensitive, including the extrinsic incubation period required for
parasites to develop within the vector. Temperature also underlies dramatic differences in the individual-level
variation in the extrinsic incubation period, yet the influence of this variation in disease transmission is largely
unexplored. We incorporate empirical estimates of dengue virus extrinsic incubation period and its variation
across a range of temperatures into a stochastic model to examine the consequences for disease emergence. We
find that such variation impacts the probability of disease emergence because exceptionally rapid, but empiri-
cally observed incubation — typically ignored by modelling only the average — increases the chance of disease
emergence even at the limits of the temperature range for dengue transmission. We show that variation in the
extrinsic incubation period causes the greatest proportional increase in the risk of disease emergence at cooler
temperatures where the mean incubation period is long, and associated variation is large. Thus, ignoring EIP
variation will likely lead to underestimation of the risk of vector-borne disease emergence in temperate climates.

1. Introduction

Temperature is a key climatic feature driving the risk of vector-
borne diseases, impacting the vital performance of arthropod vector
species (Dell et al., 2011) as well as the development of parasites within
those vectors (Paaijmans et al., 2011; Liu et al., 2017). Many traits of
vectors and parasites exhibit unimodal thermal performance curves,
with the peak performance observed at some intermediate temperature
(Mordecai et al., 2013). Mathematical models taking into account these
relationships have predicted that the estimates of disease risks are
highly temperature-sensitive (Mordecai et al., 2013, 2017b; Johnson
et al., 2015), and their predictions have been instrumental in under-
standing the expanding threat of vector-borne diseases in the context of
climate change.

A growing body of experimental studies documents the time-course
of pathogen incubation and maturation in arthropod vectors, showing
considerable variation in the time it takes for a vector to become in-
fectious following exposure, known as the extrinsic incubation period
(EIP) (e.g., West Nile virus (Reisen et al., 2006; Johansson et al., 2010);
malaria (Paaijmans et al., 2011); bluetongue virus (Carpenter et al.,

2011); dengue (Carrington et al., 2013; Chan and Johansson, 2012)).
The process of extrinsic incubation involves a journey through several
vector tissues and organs. For example, in dengue virus, the mosquito
stage of the virus's lifecycle starts when the mosquito ingests a blood
meal from an infectious host. After the virus spreads and multiplies in
the midgut, viral particles migrate to various tissues before reaching the
salivary gland, from where the virus can be transmitted, and the vector
thus becomes infectious (Guzman et al., 2016). For many vector-borne
parasites, the timing of incubation is crucial for their success because
the average adult lifespan of a female mosquito is comparable to the
average EIP. Empirical data for dengue show that the timing is parti-
cularly tight at both temperature extremes, where the expected EIP is
the same or longer than the expected lifespan (Fig. 1a). Under these
conditions, the odds are stacked against a “typical” parasite in a “ty-
pical” vector (i.e., infection with the expected EIP duration) to suc-
cessfully complete incubation before the vector dies due to extrinsic
causes. The probability of successfully completing incubation, and the
vector becoming infectious to the next vertebrate host, diminishes ex-
ponentially with every passing moment after infecting a mosquito be-
cause the vector is expected to suffer extrinsic mortality due to, for
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example, pollutants, solar radiation, and predation. As a result, there is
an accelerating benefit in reducing EIP, and hence parasites with a short
EIP enjoy a disproportionate fitness advantage through increased in-
cubation success.

Crucially for understanding temperature-dependent disease risks,
temperature affects both the mean and variability of the duration of
EIP: in dengue virus, it has been shown that both the expected duration
of EIP and the variation around that expectation decrease with in-
creasing temperature (Fig. 2) (Chan and Johansson, 2012). The un-
derstanding of how temperature mediates EIP variation is important for
its impact on the proportion of exposed vectors that survive to become
infectious (i.e., probability of successful incubation), an effect that can
be explained mathematically by Jensen's Inequality (reviewed in
Denny, 2017). Assuming a constant rate of extrinsic mortality, μ, the
probability that an exposed vector survives a period of time, e−μ t, de-
cays exponentially with time, t. Therefore, the probability that an ex-
posed vector survives to become infectious, e−μ EIP, is a convex function
of time, as supported by mark-recapture data of female Aedes aegypti in
the field (Harrington et al., 2014). Due to this convex relationship,
Jensen's Inequality implies that the expected proportion of exposed
vectors that become infectious for a distribution of EIP values, E
[e−μ EIP], is greater than, or equal to, the conventional estimate,
e−μ E[EIP], which is the same proportion calculated based on the popu-
lation average EIP (Fig. 1b). Failing to incorporate realistic EIP varia-
tion (Chan and Johansson, 2012) will, therefore, lead to under-
estimating the proportion of vectors that survive to become infectious.
Focusing on two primary mosquito vectors of dengue, Fig. 1c shows
that the maximum difference between E[e−μ EIP] and e−μ E[EIP] is esti-
mated at approximately 5%. The biological intuition behind this

increase is that exceptional cases completing incubation faster than the
population average have greater odds of surviving the duration of EIP.

Despite being a key component of the vector-borne disease lifecycle,
a large fraction (∼38%) of epidemiological models ignore extrinsic
incubation altogether (Reiner et al., 2013). Furthermore, even models
that consider the process often opt for mathematically convenient
simplifications of the biology, for example by ignoring variation (i.e.,
assuming EIP follows a Dirac delta distribution, e.g.,Paaijmans et al.,
2009), or assuming that EIP is exponentially distributed (e.g., Carvalho
et al., 2019). Importantly, these contrasting assumptions about EIP
variation can quantitatively alter the estimation of disease risks
(Kamiya et al., 2017). With growing attention to the causes and con-
sequences of variability in extrinsic incubation (Rudolph et al., 2014;
Christofferson et al., 2016; Ohm et al., 2018), several recent epide-
miological models have relaxed conventional assumptions of EIP dis-
tribution to reflect empirical evidence. For example, realistic EIP var-
iation has been shown analytically to elevate conventional disease risk
estimates (Brand et al., 2016), and variation has been incorporated into
differential equation models of disease dynamics by assuming a Gamma
distribution (i.e., using a linear chain trick) (Robert et al., 2019). An
increasing number of studies make use of the distributions of viral and
vector traits to estimate uncertainty in epidemiological properties such
as the basic reproductive number, vectorial capacity, generation in-
terval and epidemic growth (Karl et al., 2014; Perkins et al., 2016; Siraj
et al., 2017; Codeço et al., 2018). Furthermore, empirically measured
EIP variability has been incorporated into individual-based simulations
to reveal variation in disease risks among dengue genotypes (Fontaine
et al., 2018).

Here, we use dengue virus as a case study to illustrate the impact of

Fig. 1. At low and high temperatures, dengue viruses face a tight race against time to complete incubation before the vector dies. (a) The difference between the
expected lifespan of female adult mosquitoes and the expected duration of EIP. Below the grey line, the average incubation period exceeds the average vector
lifespan. (b) The proportion of exposed vectors that become infectious calculated based on the population average EIP, e−μ E[EIP] (solid lines), and the proportion
calculated with realistic distribution of EIP duration, ∫=− ∞ −e e dE[ ] PDF(EIP) EIPμ μEIP

0
EIP where PDF(EIP) refers to the probability density function of the EIP

distribution. For dengue virus, PDF(EIP) is best described by the log-normal distribution for a given temperature (Chan and Johansson, 2012) (black dashed lines). (c)
The elevated proportion of exposed vectors that become infectious due to incubation variation peaks at both ends of the temperature range suitable for dengue
transmission. The colours, yellow and purple, indicate the two primary mosquito vectors of dengue, Aedes aegypti and Aedes albopictus, respectively. The estimates for
mosquito mortality and EIP distributions were adopted from Mordecai et al. (2017b) and Chan and Johansson (2012), respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Both the mean and variation of the
duration of dengue extrinsic incubation period
(EIP) are temperature-sensitive. The lines in-
dicate the log-normally distributed duration of
EIP estimated in Aedesmosquitoes by Chan and
Johansson (2012) with colours (blue, yellow,
and red) representing temperatures (20, 25,
30 °C, respectively). The arrows indicate the
average EIP at the corresponding temperature.
The dataset used to estimate the temperature-
dependent probability distributions contained
both Aedes aegypti and A. albopictus, though A.

aegypti was overrepresented in the data (140 versus 6 observations) (Chan and Johansson, 2012). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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temperature-dependent EIP variation on disease emergence using a
stochastic individual-based simulation approach. We take advantage of
the meta-analytic estimates of empirical EIP distributions published by
Chan and Johansson (2012) who compiled EIP data for dengue virus
from 35 studies to determine that the variation in EIP is best described
by the log-normal distribution (Fig. 2). We predict the probability of
dengue virus emergence and epidemic size in a human population given
the introduction of a single infected human across a range of tem-
peratures and mosquito-to-human ratios. We find that variation in the
EIP elevates the disease risk because exceptionally rapid incubation —
which would be ignored by modelling only the average — increases the
chance of disease emergence, even outside the temperature range
where dengue transmission is commonly expected. We show that the
proportional increase in the risk of disease emergence due to EIP var-
iation is greater at cooler temperatures where the mean EIP is long, and
its variation is large. This finding has implications for predicting the
geographical distribution and the transmission season of dengue virus.

2. Methods

We used a stochastic algorithm to simulate a classic
Ross–Macdonald model as a system of delay differential equations that
mirror the epidemiology of dengue virus in a human population (re-
viewed in Smith et al., 2012). Following Barrio et al. (2006), we im-
plemented a fixed duration process (viral incubation within mosqui-
toes) in an otherwise standard method for stochastically simulating
ordinary differential equations (i.e., Gillespie algorithm). The dynamics
of the mosquito population are governed by:
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In this model, susceptible mosquitoes, MS, were born at a per-capita
rate, λ. We kept the mosquito population size constant (so, λ= μMT,
where MT and μ are the total population size and the rate of mosquito
extrinsic mortality, respectively), in order to forgo the vast complexity
of processes governing the larval mosquito dynamics (Beck-Johnson
et al., 2013), for which there is a dearth of data on Aedes mosquitoes.
We assumed that all mosquitoes experience the same mortality rate, μ,
regardless of their infection status. In our model, mosquitoes were
equally likely to bite a host of any class, so hosts get bitten by a given
mosquito at the rate r, calculated as the per mosquito biting rate, b,
divided by the total host population size, HT, making disease trans-
mission frequency-dependent (Keeling and Rohani, 2008). A suscep-
tible mosquito becomes exposed, ME, to the virus when it bites an in-
fected host, HI, with the probability TMH. If a mosquito gets exposed to
the virus, the process of viral incubation — i.e., transition from ex-
posed, ME, to infectious, MI (Eq. (1)b and c) — takes the exact duration
of EIP. In the stochastic simulation, the duration of EIP was assigned to
each mosquito at birth, making the model individual-based with respect
to the duration of EIP. An exposed mosquito survives the duration of
EIP with probability e−μ EIP. The individual EIP value in a polymorphic
population (with realistic EIP variation) was determined by randomly
sampling from the empirically derived lognormal distribution estimated
by Chan and Johansson (2012) who compiled EIP data for dengue virus
from 35 studies. From their model (their Eq. (1) and Table 1) (Chan and
Johansson, 2012) and parameter estimates (their Table 2; 4th row)
(Chan and Johansson, 2012), we obtained the distribution of EIP across
a range of temperatures (Fig. 2). In a mosquito population mono-
morphic for the duration of EIP (i.e., ignoring EIP variation), the

average duration of EIP (often referred to as EIP50 (Christofferson et al.,
2016)) at the appropriate temperature was assigned to every mosquito
at birth.

The host population was modelled as a compartmental susceptible-
exposed-infected-recovered (SEIR) model,
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where THM, θ and γ are the probability of mosquito-to-human viral
transmission, viral incubation rate in humans and human recovery rate,
respectively. The average latent period of dengue virus in humans has
been estimated at 5.9 days (Chan and Johansson, 2012) (i.e., θ=5.9−1

per day) and patients typically recover from dengue fever after a week
(Guzman et al., 2016) (i.e., γ=7−1 per day). Robust immune responses
against dengue confer life-long protection for a given serotype (Guzman
et al., 2016); thus we did not consider waning immunity in this model.
The human population size was set to 1000 and we explored a range of
values for the total mosquito density, MT, as reliable estimates of the
mosquito-to-human ratio are rare. We parameterized the rest of the
model with temperature-dependent empirical estimates published by
Mordecai et al. (2017b). Specifically, we used GraphClick (Arizona-
Software, 2010) to extract the estimated dengue virus trait values from
their Fig. 1 and Fig. A in Supporting information 1 for A. aegypti and A.
albopictus, respectively (Mordecai et al., 2017b). We list the parameter
values used in the simulations in Supplementary Information 1. The
complete collection of data by Mordecai et al. (2017b) are available
online (Mordecai et al., 2017a).

We estimated the probability of disease emergence as the fraction of
runs (of 10,000 replicates) for which the introduction of a single in-
fected human to the entirely susceptible population led to at least one
secondary human infection. We quantified the relative effect of EIP
variation as the log risk ratio (lnRR, also known as relative risk) of the
probability of disease emergence in simulations with realistic EIP var-
iation to the probability of disease emergence in simulations only
considering the population average EIP, keeping all other parameters
constant.

3. Results & discussion

Using a stochastic simulation model parameterized for dengue virus,
we found that realistic variation in EIP across exposed mosquitoes
elevates disease emergence risks in human populations (Fig. 3). Spe-
cifically, our results demonstrate that EIP variation in either of the
primary dengue vector species, A. aegypti or A. albopictus, increases the
chance that the introduction of a single infected host causes secondary
human infections in a fully susceptible population, at a given tem-
perature. As a consequence, EIP variation extends the temperature
range over which disease emergence can occur, particularly at the
lower extreme. These effects are amplified with increasing mosquito-to-
human ratios (Fig. 3).

The relative impact of EIP variation was most pronounced at the
fringe of the temperature range that allows for dengue emergence
(Fig. 4), meaning that assuming a constant, average EIP will under-
estimate the risk. When the climatic conditions are sub-optimal for
dengue transmission — for example, when the race between incubation
and mosquito mortality is tight — disease transmission is largely car-
ried out by a small fraction of exceptional vectors that complete EIP
faster than the population average. This phenomenon is ignored in a
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conventional fixed-EIP approach. The finding that variation in EIP has a
stronger impact at low temperatures is due to the interplay between the
distribution of EIP and other temperature-dependent vital parameters.
First, the distribution of dengue EIP for a given temperature is best
explained by the log-normal distribution, for which the variance in-
creases with the mean (Chan and Johansson, 2012). Therefore the
variation in EIP is larger at lower temperatures where the mean dura-
tion in EIP is also long. Second, a number of other factors governing the
interaction between dengue virus and mosquitoes are temperature-de-
pendent, and so they also shape the temperature range suitable for
disease emergence. For example, the spike in the proportion of exposed
vectors that become infectious due to variation in A. aegypti at the high
temperature range (Fig. 1c∼37 °C) has little effect since the probability
of an exposed mosquito becoming infectious tends towards zero beyond
35 °C for this species (Mordecai et al., 2017b) (Fig. 1b ∼37 °C). Thus,
the influence of incubation variation at the high-temperature end, in
particular, is buffered by a sharp decline in other vital parameters of the
mosquito and virus.

Our model was parameterized with the most comprehensive esti-
mates of temperature-dependent dengue EIP variation and mosquito
vital parameters published by Chan and Johansson (2012) and
Mordecai et al. (2017b), respectively. While primary observations are
rather sparse at high temperatures in these studies, our finding that the
relative impact of EIP variation is largest at lower temperatures is likely
robust as parameter estimates were based on relatively more data at the
lower temperature range (Mordecai et al., 2017b; Chan and Johansson,
2012). Because the relationship between mosquito and human densities
is highly complex (Romeo-Aznar et al., 2018), we explored the impact
of EIP variation across a range of mosquito-to-human ratios. We find
that the impact of EIP variation increases with the mosquito-to-human
ratio, indicating that incorporating EIP variation is most important for
accurate prediction of disease risk in areas of high relative mosquito

density (Fig. 4).
We next explored the size of additional epidemics expected due to

EIP variation. We found an overrepresentation of minor epidemics —
defined as those in which less than 10% of the human population be-
comes infected — under sub-optimal conditions for dengue transmis-
sion (e.g., low mosquito-to-human ratio and fringe temperatures)
(Fig. 5). This result suggests that EIP variation — and the few ex-
ceptionally rapidly incubating infections that result from it — increases
the chance of short transmission chains involving a small handful of
humans even when the deterministic force of infection is too weak to
sustain transmission. These epidemics, which are small and rare, yet
still concerning from a public health perspective, would be overlooked
by the conventional approach that ignores EIP variation. Put another
way, EIP variation reduces the chance of disease extinction due to de-
mographic stochasticity. As a consequence, the model that takes into
account EIP variation predicts the more frequent occurrence of epi-
demics across the entire temperature range (Fig. 5).

To highlight the impact of temperature-dependent EIP variation in a
geographical context, we predicted the probability of disease emer-
gence across the continental United States, using average temperature
in July (Matsuura and Willmott, 2018), the warmest month in North
America. We note that our projection here offer insight about relative
(rather than absolute) risk: while we allow temperature to determine
EIP variation and other virus and vector traits, we assume all else is
equal across this geographic range. Fig. 6 shows that ignoring the
variation would lead to underestimation of dengue risk in its entire
geographical range, but particularly at the expanding northern edge, for
example in cities like Indianapolis (IN) and Philadelphia (PH), but less
so in Austin (AU) — three US cities within the range of A. albopictus
predicted by the Center for Disease Control (CDC, 2017). Furthermore,
since EIP variation increases the risk at low temperatures and never
reduces it (Fig. 4), the standard approach is likely to underestimate the

Fig. 3. Variation in viral EIP elevates the risk of
dengue emergence in human populations. The
model that incorporates realistic incubation
variation (outlined in black) predicts elevated
risk of disease emergence for human popula-
tions assuming dengue is vectored by either
Aedes aegypti or A. albopictus, compared to the
conventional approach that ignores variation
(no outline). The probability of disease emer-
gence (indicated by colours) given the in-
troduction of a single infected host (i.e., pro-
duction of one or more secondary human
infection(s)) was calculated assuming a mos-
quito population comprised solely of either A.
aegypti and A. albopictus across a range of
temperatures (x-axis) and mosquito-to-human
ratios, m (y-axis). (For interpretation of the
references to colour in this figure legend, the
reader is referred to the web version of this
article.)

Fig. 4. The impact of EIP variation on dengue
emergence is strongest at the lower fringe of
the temperature range that allows for dengue
transmission. The log risk ratio (lnRR, shown in
colours) was calculated as the natural loga-
rithm of the ratio between the probabilities of
disease emergence when taking EIP variation
into account versus not, i.e., the values pre-
sented in Fig. 3 with and without the black
outline, respectively. The colour legend shows
lnRR (in black) with the corresponding linear-

transformed risk ratio in parentheses (in grey): for example, lnRR=2 indicates a 7.4-fold increase in the probability of disease emergence. In calculating lnRR, we
focused on simulations where the probability of disease emergence with EIP variation exceeded 1% to disregard extremely rare events. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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duration of dengue transmission seasons. Again, the predicted pattern
demonstrates that the impact of EIP variation increases with the mos-
quito-to-human ratio, indicating that ignoring EIP variation also leads
to a severe underestimation of disease risk in areas with high relative
mosquito density (Figs. 4 and 6). However, since mosquito abundance
is climate-driven and generally lower in the fringes of the species’
ranges (Li et al., 2019), the actual elevated risk may not be as ex-
aggerated as our most extreme predictions indicate (Fig. 6, right panel).
Nonetheless, accurate prediction of the risk of dengue emergence lo-
cally will rely on a fine-scale understanding of local mosquito abun-
dance, and ultimately, the mosquito-to-human ratio.

In the present study, we assumed that female adult mosquitoes ex-
perience constant mortality due to extrinsic causes, as assumed by the
standard approach in vector-borne disease modelling. In reality, ex-
trinsic sources of mortality most likely operate alongside intrinsic
causes, which leads to senescence and age-dependent mosquito survival
(Harrington et al., 2014). Per Jensen's Inequality, the impact of EIP
variation would differ qualitatively if young adult female mosquitoes
rarely experience mortality such that mosquito survival is a concave
function of time. However, we believe such a situation is unlikely be-
cause field mark-recapture data support a convex relationship between
mosquito survival and time (Harrington et al., 2014), and the finding
that estimated mosquito survival is lower in mark-recapture experi-
ments carried out in the wild compared to laboratory experiments also
supports the role of extrinsic mortality in wild mosquito populations
(Ryan et al., 2015). Little is known about the relative importance of
different sources of mortality in the wild and it appears context-de-
pendent (e.g., with respect to the climate (Hugo et al., 2014)). Future
predictive models will benefit from an understanding of mosquito
survival in the wild with respect to both temperature and age,

information that, to our knowledge, is currently only available for
malaria vectors in a laboratory setting (Shapiro et al., 2017).

Recent years have seen sporadic re-emergence of vector-borne dis-
eases in temperate regions where they had been absent for decades
(Bouri et al., 2012; Tomasello and Schlagenhauf, 2013; Schaffner and
Mathis, 2014; Lai et al., 2015). Because major dengue epidemics are
unlikely to occur in these areas (Mordecai et al., 2017b), our primary
focus was to better understand the impact of temperature-dependent
individual heterogeneity on stochastic occurrences of small disease
outbreaks that would be overlooked by deterministic modelling. Our
individual-based simulations demonstrated that failing to incorporate
variability in the duration of EIP across individual vectors can lead to a
severe underestimation of the risk of minor epidemics and duration of
potential dengue exposure in cooler climates. Although researchers
should also consider more analytically tractable modelling approaches
(e.g. branching process theory and Kolmogorov equations) (Lloyd et al.,
2007), stochastic individual simulations are appealing for studying the
impact of heterogeneities in vector-borne diseases due to their ability to
accommodate comprehensive empirical knowledge (Perkins et al.,
2019).

Dengue virus offers the most comprehensive documentation on
temperature-sensitive measures of mosquito and pathogen traits and
EIP variation to date. Nonetheless, we expect that the basic mathema-
tical principle underlying the inflation of disease risk due to variation
— Jensen's Inequality due to the convex relationship between the
duration of EIP and extrinsic incubation success — applies widely
across vector-borne diseases. Thus, variation in EIP is likely to elevate
disease risks in other vector-borne diseases, though the exact quanti-
tative impact is likely to vary across diseases and vector species, as we
found in our comparisons of A. albopictus and A. aegypti. Furthermore,

Fig. 5. Realistic EIP variation uncovers epidemics unaccounted for by the conventional approach that ignores EIP variation. Plotted in stacked histograms is the
difference in the frequency of epidemics between simulations with and without EIP variation across a range of temperatures and mosquito-to-human ratios, m, for
Aedes aegypti and A. albopictus. The colours indicate the epidemic size measured as the proportion of the human population cumulatively infected during an epidemic,
with blue and purple indicating minor (≤10%) and major (≥90%) epidemics, respectively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 6. Ignoring EIP variation underestimates the disease risk in its entire geographical range, but particularly at the temperate edge, for example in cities like
Indianapolis (IN) and Philadelphia (PH), but less so in Austin (AU) where the climate is warmer. The colour indicates the impact of EIP variation (measured as lnRR of
the probability of disease emergence with and without realistic EIP variation; as shown in Fig. 4, which uses the same scale) on the probability of disease emergence
by A. albopictus in July. In calculating lnRR, we focused on simulations where the probability of disease emergence with EIP variation exceeded 1% to disregard
extremely rare events. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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while we here focused solely on temperature-dependent variability in
EIP, a future challenge is to characterize and integrate the knowledge of
variability in multiple vector and parasite life-history traits and their
covariation across a range of temperatures (Vazquez-Prokopec et al.,
2016). Individual-based simulations, together with a growing body of
experimental data, will offer further opportunities to achieve a more
comprehensive understanding of the role of individual heterogeneity in
vector-borne disease epidemiology.
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